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Abstract. This study discusses the behavior analysis model of the Susceptible-Infected-Recovered (SIR) epidemic of 

the spread of measles based on age structure. The total population is grouped into four age groups, the first age 

group (0-4 years), the second age group (5-9 years), the third age group (10-14 years), and the fourth age group (> 

15 years). The steps in analyzing the behavior of the model can be done by determining the equilibrium point, basic 

reproduction number, and stability analysis at the equilibrium point. In the measles distribution model with four 

age groups, where each age group has no interaction with other age groups, sixteen equilibrium points are 

obtained, which are a combination of the disease-free equilibrium and endemic equilibrium points separately. The 

stability properties of each equilibrium point can be determined by the value of the basic reproduction number 

(R_0) which is the product of the basic reproduction number of each age group. The measles disease-free 

equilibrium point will be locally asymptotically stable when R_0<1, meanwhile the endemic equilibrium point is 

locally asymptotically stable when R_0>1. This research contributes to providing information to both the 

government and the public. 
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1. INTRODUCTION 

Measles is a disease caused by a virus. This disease comes from the Paramyxviridae family which is 

contained in the RNA virus of the Morbilivirus genus. Measles is an acute infectious disease that mostly 

affects children. Measles virus can be spread through the air contaminated by the secretions of an infected 

person [1-3]. According to the Agency for Disease Control and Prevention [4] states that 90% of people 

who have interacted or made direct contact with sufferers can be infected if each individual does not have 

an immune system against measles. Otherwise, an individual will be immune if they have been vaccinated 

or have been infected with the virus before. In a disease spread in a population, vaccination is an effective 

effort to prevent and reduce the spread of measles. 

The above phenomenon can be explained using a mathematical model [5]. Mathematical models can 

be described in a differential equation [6], which consists of linear differential equations [7] and nonlinear 

equations [8]. One of the models that can be used in this problem is the SIR model. The SIR model was 

first introduced by Kemack and MacKendrick, the SIR (Susceptible – Infected – Recovered) epidemic 

model is used to explain the spread of disease, where individuals who have recovered from the disease will 

not be infected again or have an immune system. In this mathematical model contains three individual 

subclasses in a system of equations consisting of the variables Susceptible (S), Infected (I), Recovered (R). 

In previous studies, models of the spread of measles have been constructed with different problem 

constraints using various approaches [9-11]. In this study, the researchers constructed a measles distribution 

model based on the age structure, the researchers divided into four age groups as follows: (1) Group 1 (0-4 

years); (2) Group 2 (5-9 years); (3) Group 3 (10-14 years); (4) Group 4 (above 15 years). In constructing 

the mathematical model of measles distribution, several assumptions are made: 

1. All babies born include Susceptible. 

2. There is no migration, which means that the population is closed, the increase and decrease in the 

population is based on births and deaths. 

3. Diseases can be cured. 

4. Death can occur naturally and due to disease. 

5. Individuals who have recovered cannot transmit the disease. 

6. Measles vaccination can increase immunity to 99%, so it can be assumed that vaccination efficacy 

reaches 100% [12]. 

7. Interaction with infected individuals only occurs in the same age group. Thus, there is no possibility 

of infected individuals spreading the disease to susceptible individuals in other age groups. 

Based on the flow chart, it is possible to form a system of differential equations from the SIR measles 

spread model with the following age structure: 

 

Group 1: Infant Group (0-4 years) 

𝑑𝑆1

𝑑𝑡
= (1 − 𝜃1𝜎1)Λ − 𝛽1𝑆1𝐼1 − 𝑑1𝑆1 − 𝛼1𝑆1 

𝑑𝐼1
𝑑𝑡

= 𝛽1𝑆1𝐼1 − (𝑑1 + 𝜇1 + 𝛾1) 𝐼1 

𝑑𝑅1

𝑑𝑡
= 𝜃1𝜎1Λ + 𝛾1𝐼1 − 𝑑1𝑅1 

 

(1) 

Group 2: children group (5-9 years) 

𝑑𝑆2

𝑑𝑡
= (1 − 𝜃2𝜎2)α1𝑆1 − 𝛽2𝑆2𝐼2 − 𝑑2𝑆2 − 𝛼2𝑆2 

𝑑𝐼2
𝑑𝑡

= 𝛽2𝑆2𝐼2 − (𝑑2 + 𝜇2 + 𝛾2) 𝐼2 

   (2) 
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𝑑𝑅2

𝑑𝑡
= (𝜃2𝜎2)α1𝑆1 + 𝛾2𝐼2 − 𝑑2𝑅2 

 

Group 3: youth group (10-14 years) 

𝑑𝑆3

𝑑𝑡
= 𝛼2𝑆2 − 𝛽3𝑆3𝐼3 − (𝑑3 + 𝛼3)𝑆3 

𝑑𝐼3
𝑑𝑡

= 𝛽3𝑆3𝐼3 − (𝑑3 + 𝜇3 + 𝛾3) 𝐼3 

𝑑𝑅3

𝑑𝑡
= 𝛾3𝐼3 − 𝑑3𝑅3      

    (3) 

 

Group 4: adult group (>15 years) 

𝑑𝑆4

𝑑𝑡
= 𝛼3𝑆3 − 𝛽4𝑆4𝐼4 − 𝑑4𝑆4 

𝑑𝐼4
𝑑𝑡

= 𝛽4𝑆4𝐼4 − (𝑑4 + 𝜇4 + 𝛾4) 𝐼4 

𝑑𝑅4

𝑑𝑡
= 𝛾4𝐼4 − 𝑑4𝑅4         

     (4) 

 

From the above model, 𝑆𝑘  denotes a population of individuals who have their immune systems 

susceptible to disease in group k, 𝐼𝑘 represents a population of infected individuals who can transmit 

disease through direct contact in group k, 𝑅𝑘 represents a population of individuals who have recovered so 

that they cannot contract the disease in group k. Λ𝑘 represents the birth of an individual, 𝛽𝑘 represents the 

rate of infection spread of measles in group k, 𝑑𝑘represents natural death in group k, 𝜇𝑘  represents disease-

caused death rate in group 𝑘, 𝛼𝑘  represents rate for aging in group k, 𝛾𝑘 represents the recovery rate in 

group k, 𝜎1 and 𝜎2 represent the level of vaccination efficiency in groups 1 and 2, 𝜃1and 𝜃2 represent the 

average coverage of vaccination, with 𝑘 = 1,2,3,4. 

 

 

2. RESEARCH METHODS 

The steps that can be taken in this research: 

a) Determine the equilibrium point of the measles distribution model based on the age structure. 

b) Determine the basic reproduction number (𝑅0) using Next Generation Matrix. 

c) Analyzing the local stability of the equilibrium point of the measles distribution model. 

d) Shows the results of a numerical simulation of the equilibrium point. 

 

 
3. RESULTS AND DISCUSSION 

3.1 Equilibrium Point 

In calculating the equilibrium point for the spread of measles with the age structure, to simplify the 

calculation process, the equilibrium point for each age group will be sought first. 

3.1.1 Equilibrium Point Group I 

The dynamics model of the spread of measles group I in equation (1) will have an equilibrium point 

if it satisfies 
𝑑𝑆1(𝑡)

𝑑𝑡
= 0,

𝑑𝑅1(𝑡)

𝑑𝑡
= 0,

𝑑𝐼1(𝑡)

𝑑𝑡
= 0.  So equation 1 can be written as: 
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0 = (1 − 𝜃1𝜎1)Λ − 𝛽1𝑆1
0𝐼1

0 − 𝑑1𝑆1
0 − 𝛼1𝑆1

0    (5) 

0 = 𝛽1𝑆1
0𝐼1

0 − (𝑑1 + 𝜇1 + 𝛾1)𝐼1
0 (6) 

0 = 𝜃1𝜎1Λ + 𝛾1 𝐼1
0 − 𝑑1𝑅1

0 (7) 

 

The disease-free equilibrium point of the group I measles spread model was obtained if the individual 

was infected (𝐼 = 0). So that we get a situation where all individuals enter the susceptible population and 

the population recovers after vaccination. By substituting 𝐼 = 0 in equation (5), we get: 

𝑆1
0  =

Λ(1 − 𝜃1𝜎1)  

(𝑑1 + 𝛼1)
 

Then in the same way substituting 𝐼 = 0 in equation (7) we get: 

𝑅1
0 =

𝜃1𝜎1Λ

𝑑1
 

Based on equations (5),(6),(7) the disease-free equilibrium point is obtained for group I (𝐸1
0) 

𝐸1
0 = (

Λ(1 − 𝜃1𝜎1)  

(𝑑1 + 𝛼1)
, 0,

𝜃1𝜎1Λ

𝑑1
)      ,    0 ≤ 𝜃1𝜎1 ≤ 1 (8) 

 

The disease endemic equilibrium point of the measles spread model in group I was obtained if the 

infected individual was not equal to zero I≠0. So that in a population there are individuals who have been 

infected and can transmit measles in that population. The endemic equilibrium point is obtained by 

substituting 𝐼 ≠ 0 in equation (6), we get 

𝑆1
∗ =

𝑑1 + 𝜇1 + 𝛾1

𝛽1
  (9) 

By substituting (9) in equation (5) 

𝐼1
∗ =

(1 − 𝜃1𝜎1)Λ 𝛽1 − (𝑑1
2 + 𝜇1𝑑1 + 𝛾1𝑑1 + 𝛼1𝑑1 + 𝛼1𝜇1 + 𝛼1𝛾1)

(𝑑1 + 𝜇1 + 𝛾1)𝛽1
    (10) 

By substituting (10) in equation (7) 

𝑅1
∗ =

𝜃1𝜎1Λ𝛽1𝑑1 + 𝜃1𝜎1Λ𝛽1𝜇1 + Λ𝛽1𝛾1 − 𝛾1(𝑑1
2 + 𝜇1𝑑1 + 𝛾1𝑑1 + 𝛼1𝑑1 + 𝛼1𝜇1 + 𝛼1𝛾1)

(𝑑1
2 + 𝑑1𝜇1 + 𝑑1𝛾1)𝛽1

 (11) 

 

Based on equation (5), (6), (7) the endemic equilibrium point for group I (𝐸1
∗) is obtained. 

Let  𝜑1 = 𝑑1
2 + 𝜇1𝑑1 + 𝛾1𝑑1 + 𝛼1𝑑1 + 𝛼1𝜇1 + 𝛼1𝛾1 

𝑆1
∗ =

𝑑1 + 𝜇1 + 𝛾1

𝛽1
  

𝐼1
∗ =

(1 − 𝜃1𝜎1)Λ 𝛽1 − 𝜑1

(𝑑1 + 𝜇1 + 𝛾1)𝛽1
       

𝑅1
∗ =

𝜃1𝜎1Λ𝛽1(𝑑1 + 𝜇1) + 𝛾1(Λ𝛽1 − 𝜑1)

(𝑑1
2 + 𝑑1𝜇1 + 𝑑1𝛾1)𝛽1

         

(12) 

 

3.1.2 Equilibrium Point Group II 

The dynamics model of the spread of measles group II in equation (2) will have an equilibrium point 

if it satisfies 
𝑑𝑆2(𝑡)

𝑑𝑡
= 0,

𝑑𝑅2(𝑡)

𝑑𝑡
= 0,

𝑑𝐼2(𝑡)

𝑑𝑡
= 0. In the same way it can be done to find the equilibrium point 

free of disease and endemic in group II. 
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So that the disease-free equilibrium point from the group II measles spread model is obtained if the 

individual is infected (𝐼 = 0). So that in equation (2), the disease-free equilibrium point for group II (𝐸2
0) is 

𝐸2
0 = (

(1 − 𝜃2𝜎2)α1S1   

(𝑑2 + 𝛼2)
, 0,

(𝜃2𝜎2)𝛼1𝑆1

𝑑2
)      ,    0 ≤ 𝜃2𝜎2 ≤ 1 (13) 

The disease endemic equilibrium point of the group II measles distribution model is obtained if the 

infected individual is not equal to zero 𝐼 ≠ 0. So that the endemic equilibrium point (𝐸2
∗) in equation (2) is 

as follows 

Let 𝜑2 = 𝑑2
2 + 𝑑2𝜇2 + 𝑑2𝛾2 + 𝛼2𝑑2 + 𝜇2𝛼2 + 𝛾2𝛼2 

 

𝑆2
∗ =

𝑑2 + 𝜇2 + 𝛾2 

𝛽2
                                               

𝐼2
∗ =

(1 − 𝜃2𝜎2)α1𝑆1𝛽2 − 𝜑2

𝛽2(𝑑2 + 𝜇2 + 𝛾2)
     

𝑅2
∗ =

𝜃2𝜎2𝛼1𝑆1𝛽2(𝑑2 + 𝜇2) + 𝛾2(𝛼1𝑆1β2 − 𝜑2)

𝛽2(𝑑2
2 + 𝑑2𝜇2 + 𝑑2𝛾2)

 

(14) 

 

3.1.3 Equilibrium Point Group III 

The dynamics model of the spread of measles group III in equation (3) will have an equilibrium point 

if it satisfies 
𝑑𝑆3(𝑡)

𝑑𝑡
= 0,

𝑑𝑅3(𝑡)

𝑑𝑡
= 0,

𝑑𝐼3(𝑡)

𝑑𝑡
= 0. In the same way it can be done to find the equilibrium point 

free of disease and endemic in group III. 

So that the disease-free equilibrium point from the group III measles spread model is obtained if the 

individual is infected (𝐼 = 0). So that in equation (3), the disease-free equilibrium point for group III 

(𝐸3
0) is 

𝐸3
0 = (

𝛼2𝑆2  

(𝑑3 + 𝛼3)
, 0,0)      (15) 

The disease endemic equilibrium point of the group III measles distribution model is obtained if the 

infected individual is not equal to zero 𝐼 ≠ 0. So that the endemic equilibrium point (𝐸3
∗) in equation (3) is 

as follows 

Let 𝜑3 = 𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3 + 𝛼3𝑑3 + 𝜇3𝛼3 + 𝛾3𝛼3 

 

𝑆3
∗ =

𝑑3 + 𝜇3 + 𝛾3 

𝛽3
       

𝐼3
∗ =

𝛼2𝑆2𝛽3 − 𝜑3

𝛽3(𝑑3 + 𝜇3 + 𝛾3)
 

𝑅3
∗ =

𝛾3𝛼2𝑆2𝛽3 − 𝛾3𝜑3

𝛽3(𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3)

=
𝛾3(𝛼2𝑆2𝛽3 − 𝜑3)

𝛽3(𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3)

 

(16) 

 

3.1.4 Equilibrium Point Group IV 

The dynamics model of the spread of measles group IV in equation (4) will have an equilibrium point 

if it satisfies 
𝑑𝑆4(𝑡)

𝑑𝑡
= 0,

𝑑𝑅4(𝑡)

𝑑𝑡
= 0,

𝑑𝐼4(𝑡)

𝑑𝑡
= 0. In the same way it can be done to find the equilibrium point 

free of disease and endemic in group III. 
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So that the disease-free equilibrium points from the group IV measles spread model is obtained if the 

individual is infected (𝐼 = 0). So that in equation (4), the disease-free equilibrium points for group IV 

(𝐸4
0) is 

𝐸4
0 = (

𝛼3𝑆3  

(𝑑3 + 𝛼3)
, 0,0)      (17) 

The disease endemic equilibrium point of the group IV measles distribution model is obtained if the 

infected individual is not equal to zero 𝐼 ≠ 0. So that the endemic equilibrium point (𝐸4
∗) in equation (4) is 

as follows 

Let 𝜑4 = 𝑑4
2 + 𝑑4𝜇4 + 𝑑4𝛾4 

 

𝑆4
∗ =

𝑑4 + 𝜇4 + 𝛾4

𝛽4
 

𝐼4
∗ =

𝛼3𝑆3𝛽4 − 𝜑4

𝛽4(𝑑4 + 𝜇4 + 𝛾4)
 

𝑅4
∗ =

𝛾4𝛼3𝑆3𝛽4 − 𝛾4𝜑4

𝛽4(𝑑4
2 + 𝑑4𝜇4 + 𝑑4𝛾4)

 

(18) 

 

Based on the calculation of the equilibrium point above, two equilibrium points are obtained, there 

are the disease-free equilibrium point and the endemic equilibrium point. So that in equation (1)-(4), the 

equilibrium point conditions are obtained as follows: 

1. 𝐸∗
1 = (𝐸1

0, 𝐸2
0, 𝐸3

0, 𝐸4
0) 

2. 𝐸∗
2 = (𝐸1

0, 𝐸2
0, 𝐸3

0, 𝐸4
∗) 

3. 𝐸∗
3 = (𝐸1

0, 𝐸2
0, 𝐸3

∗, 𝐸4
0) 

4. 𝐸∗
4 = (𝐸1

0, 𝐸2
∗, 𝐸3

0, 𝐸4
0) 

5. 𝐸∗
5 = (𝐸1

∗, 𝐸2
0, 𝐸3

0, 𝐸4
0) 

6. 𝐸∗
6 = (𝐸1

∗, 𝐸2
∗, 𝐸3

0, 𝐸4
0) 

7. 𝐸∗
7 = (𝐸1

0, 𝐸2
∗, 𝐸3

∗, 𝐸4
0) 

8. 𝐸∗
8 = (𝐸1

0, 𝐸2
0, 𝐸3

∗, 𝐸4
∗) 

9. 𝐸∗
9 = (𝐸1

0, 𝐸2
∗, 𝐸3

0, 𝐸4
∗) 

10. 𝐸∗
10 = (𝐸1

∗, 𝐸2
0, 𝐸3

∗, 𝐸4
0) 

11. 𝐸∗
11 = (𝐸1

∗, 𝐸2
∗, 𝐸3

∗, 𝐸4
∗) 

12. 𝐸∗
12 = (𝐸1

0, 𝐸2
∗, 𝐸3

∗, 𝐸4
∗) 

13. 𝐸∗
13 = (𝐸1

∗, 𝐸2
0, 𝐸3

∗, 𝐸4
∗) 

14. 𝐸∗
14 = (𝐸1

∗, 𝐸2
∗, 𝐸3

0, 𝐸4
∗) 

15. 𝐸∗
15 = (𝐸1

∗, 𝐸2
∗, 𝐸3

0, 𝐸4
∗) 

16. 𝐸∗
16 = (𝐸1

∗, 𝐸2
∗, 𝐸3

∗, 𝐸4
∗) 

 

With 𝐸1
0, 𝐸2

0, 𝐸3
0, 𝐸4

0 based on equation (8), (13), (15), (17), while 𝐸1
∗, 𝐸2

∗, 𝐸3
∗, 𝐸4

∗ according to equation (12), 

(14), (16), (18). 
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2. Basic Reproduction Number 

The basic reproductive number (𝑅0) is the average number of susceptible individuals infected due to 

one infected individual. In determining (𝑅0) can use the next generation matrix method [13], [14]. In the 

SIR epidemic model, the infected population is the only population that can transmit measles. To determine 

the value of the basic reproduction number (𝑅0)  in the first, second, third and fourth groups, it is possible 

to linearize the infected subsystem at a disease-free equilibrium point, the infected subsystem model 

is 𝐼1, 𝐼2 , 𝐼3, 𝐼4, which can be represented in the Jacobi matrix (𝐽) as follows: 

 

𝑱 =

[
 
 
 
 
 
 
 
 
𝑑𝐼1
𝑑𝐼1

𝑑𝐼1
𝑑𝐼2

𝑑𝐼2
𝑑𝐼1

𝑑𝐼2
𝑑𝐼2

   

𝑑𝐼1
𝑑𝐼3

𝑑𝐼1
𝑑𝐼4

𝑑𝐼2
𝑑𝐼3

𝑑𝐼2
𝑑𝐼4

𝑑𝐼3
𝑑𝐼1

𝑑𝐼3
𝑑𝐼2

𝑑𝐼4
𝑑𝐼1

𝑑𝐼4
𝑑𝐼2

   

𝑑𝐼3
𝑑𝐼3

𝑑𝐼3
𝑑𝐼4

𝑑𝐼4
𝑑𝐼3

𝑑𝐼4
𝑑𝐼4]

 
 
 
 
 
 
 
 

 

 

Then, the decomposition of the Jacobi matrix above becomes 𝑱 = 𝓕 − 𝑽: 

𝓕 = [

𝛽1𝑆1 0
0 𝛽2𝑆2

         
0    0
0     0

      0       0
      0       0

     
   𝛽3𝑆3 0
      0 𝛽4𝑆4

] 

𝑽 = [

𝑑1 + 𝜇1 + 𝛾1     0     0 0
0      𝑑2 + 𝜇2 + 𝛾2     0 0
0 0          𝑑3 + 𝜇3 + 𝛾3 0

0 0     0      𝑑4 + 𝜇4 + 𝛾4

] 

 

 

Then obtained 

𝑽−𝟏 =

[
 
 
 
 
 
 
 
 

1

𝑑1 + 𝜇1 + 𝛾1
     0     0 0

0      
1

𝑑2 + 𝜇2 + 𝛾2
     0    0

0      0          
1

𝑑3 + 𝜇3 + 𝛾3
   0

0      0           0    
1

𝑑4 + 𝜇4 + 𝛾4]
 
 
 
 
 
 
 
 

 

 

 

   To obtain the next generation matrix, we use the multiplication of 𝑭 by 𝑽−𝟏  

𝑭𝑽−𝟏 = [

𝛽1𝑆1 0
0 𝛽2𝑆2

         
0    0
0     0

      0       0
      0       0

     
   𝛽3𝑆3 0
      0 𝛽4𝑆4

]

[
 
 
 
 
 
 
 
 

1

𝑑1 + 𝜇1 + 𝛾1
     0     0 0

0      
1

𝑑2 + 𝜇2 + 𝛾2
     0    0

0      0          
1

𝑑3 + 𝜇3 + 𝛾3
   0

0      0           0    
1

𝑑4 + 𝜇4 + 𝛾4]
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= 

[
 
 
 
 
 
 
 
 

𝛽1𝑆1

𝑑1 + 𝜇1 + 𝛾1
             0                                     0                 0

𝛽2𝑆2

𝑑2 + 𝜇2 + 𝛾2
       

𝛽2𝑆2

𝑑2 + 𝜇2 + 𝛾2
                   0                 0

𝛽3𝑆3

𝑑3 + 𝜇3 + 𝛾3
               0               

𝛽3𝑆3

𝑑3 + 𝜇3 + 𝛾3
           0

𝛽4𝑆4

𝑑4 + 𝜇4 + 𝛾4
               0           0            

𝛽4𝑆4

𝑑4 + 𝜇4 + 𝛾4 ]
 
 
 
 
 
 
 
 

 

 

 

Since there is no dominant absolute value of the resulting eigen values, multiplication is carried out 

between |𝜆1||𝜆2||𝜆3||𝜆4|, so 

ℛ0 = |𝜆1||𝜆2||𝜆3||𝜆4| 

ℛ0 =  (
𝛽1𝑆1

𝑑1 + 𝜇1 + 𝛾1
) (

𝛽2𝑆2

𝑑2 + 𝜇2 + 𝛾2
)(

𝛽3𝑆3

𝑑3 + 𝜇3 + 𝛾3
) (

𝛽4𝑆4

𝑑4 + 𝜇4 + 𝛾4
)       

Then substitute the disease-free equilibrium points for age groups I, II, III, and IV in the above equation, so 

that we get 

ℛ0 =  (
((1 − 𝜃1𝜎1)𝛽1Λ)

𝑑1
2 + 𝑑1𝜇1 + 𝑑1𝛾1 + 𝛼1𝑑1 + 𝛼1𝜇1 + 𝛼1𝛾1

)(
(1 − 𝜃2𝜎2)𝛽2α1S1

𝑑2
2 + 𝑑2𝜇2 + 𝑑2𝛾2 + 𝛼2𝑑2 + 𝛼2𝜇2 + 𝛼2𝛾2

) 

(
𝛽3𝛼2𝑆2

𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3 + 𝛼3𝑑3 + 𝛼3𝜇3 + 𝛼3𝛾3

)(
𝛽4𝛼3𝑆3

(𝑑4
2 + 𝜇4𝑑4 + 𝛾4𝑑4)

)                             

(19) 

Based on the above calculation, the basic reproduction number from groups I-IV is the product of the basic 

reproduction number of each group, which can be written as follows: 

                 𝑅0 = ℛ0
1 × ℛ0

2 × ℛ0
3 × ℛ0

4        

By 

ℛ0
1 =  (

((1 − 𝜃1𝜎1)𝛽1Λ)

𝑑1
2 + 𝑑1𝜇1 + 𝑑1𝛾1 + 𝛼1𝑑1 + 𝛼1𝜇1 + 𝛼1𝛾1

) 

ℛ0
2 = (

(1 − 𝜃2𝜎2)𝛽2α1S1

𝑑2
2 + 𝑑2𝜇2 + 𝑑2𝛾2 + 𝛼2𝑑2 + 𝛼2𝜇2 + 𝛼2𝛾2

) 

ℛ0
3 = (

𝛽3𝛼2𝑆2

𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3 + 𝛼3𝑑3 + 𝛼3𝜇3 + 𝛼3𝛾3

) 

ℛ0
4 = (

𝛽4𝛼3𝑆3

(𝑑4
2 + 𝜇4𝑑4 + 𝛾4𝑑4)

)    

(20) 

  

3.2 Stability Analysis 

To simplify the calculation of the stability analysis, a stability analysis of each group will be sought 

because there is no interaction between each group and other groups that can transmit the disease. The 

analysis of the stability of the equilibrium point can be determined using the Jacobi matrix, then it is 
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possible to linearize the equilibrium point in a nonlinear differential equation to obtain the eigen values. If 

the eigen value of the Jacobian matrix is negative, it means that the stability point in the system of 

equations is stable [15]. 

 

3.2.1 Stability Analysis Group I  

Analysis of the stability of the equilibrium point of the measles disease model can be determined 

using the Jacobi matrix, the Jacobi matrix in equation (1) is obtained: 

 

𝐽(𝑆, 𝐼, 𝑅) =  [

−𝛽1𝐼1 − 𝛼1 − 𝑑1 −𝛽1𝑆1 0

𝛽1𝐼1 𝛽1𝑆1 − (𝑑1 + 𝜇1 + 𝛾1) 0
0 𝛾1 −𝑑1

] 

 

(21) 

   

The local stability analysis of the equilibrium point 𝐸1
0can be determined using the disease-free 

equilibrium point 𝐸1
0 = (

Λ(1−𝜃1𝜎1)  

(𝑑1+𝛼1)
, 0,

𝜃1𝜎1Λ

𝑑1
). Then the disease-free equilibrium point is substituted in the 

matrix (21), we get 

 

𝐽(𝐸0) =  

[
 
 
 
 
 −(𝑑1 + 𝛼1) −𝛽1 (

Λ(1 − 𝜃1𝜎1)  

(𝑑1 + 𝛼1)
) 0

0 𝛽1 (
Λ(1 − 𝜃1𝜎1)  

(𝑑1 + 𝛼1)
) − (𝑑1 + 𝜇1 + 𝛾1) 0

0 𝛾1 −𝑑1]
 
 
 
 
 

 

 

Then the characteristic equation can be determined by means of 

 

det(𝐽0 − 𝜆𝐼) = 0 

det

(

  
 

−(𝑑1 + 𝛼1) − 𝜆 −
𝛽1Λ(𝜃1𝜎1 − 1)  

(𝑑1 + 𝛼1)
0

0 −
𝛽1Λ(𝜃1𝜎1 − 1)  

(𝑑1 + 𝛼1)
− (𝑑1 + 𝜇1 + 𝛾1) − 𝜆 0

0 𝛾1 −𝑑1 − 𝜆)

  
 

= 0 

 

So that the eigen values obtained are as follows: 

 

𝜆1 = −(𝑑1 + 𝛼1) 

𝜆2  =  −
𝛽1Λ(𝜃1𝜎1 − 1)  

(𝑑1 + 𝛼1)
− (𝑑1 + 𝜇1 + 𝛾1) 

𝜆3 = −𝑑1 

 

The eigen values of the characteristic equation above are real numbers and are negative if 𝑅0 < 1. It 

can be concluded that the disease-free equilibrium point is locally asymptotically stable if 𝑅0 < 1and the 

disease-free equilibrium point is unstable if  𝑅0 > 1. Analysis of the local stability of the equilibrium point 

𝐸1
∗ in age group I. It can be determined by substitution (12) in (21) to obtain 
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𝐽(𝐸∗
1) =  

[
 
 
 
 
 
(1 − 𝜃1𝜎1)Λ 𝛽1 − 𝜑1

(𝑑1 + 𝜇1 + 𝛾1)
−𝛼1 − 𝑑1 −𝑑1 − 𝜇1 − 𝛾1 0

(1 − 𝜃1𝜎1)Λ 𝛽1 − 𝜑1

(𝑑1 + 𝜇1 + 𝛾1)
  

𝛽1(𝑑1 + 𝜇1 + 𝛾1)

𝛽1
 − (𝑑1 + 𝜇1 + 𝛾1) 0

0 𝛾1 −𝑑1]
 
 
 
 
 

 

 

 

 

 

Then, in the same way, the characteristic value of will be obtained 

|𝐴| = (−𝑑4 − 𝜆) [𝜆2 + ((
𝛼3𝑆3𝛽4 − 𝜑4

(𝑑4 + 𝜇4 + 𝛾4)
) − 𝑑4)𝜆 + (𝛼3𝑆3𝛽4 − 𝜑4)] 

So the eigen values obtained are as follows: 

𝜆1 = −𝑑1 

 

 

To find 𝜆2 and 𝜆3 by using characteristic equation, where  

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0  

 
 

So, 𝜆2 and 𝜆3 satisfy the above equation, where  

𝑎1 =
(1 − 𝜃1𝜎1)Λ 𝛽1 + 𝜑1

(𝑑1 + 𝜇1 + 𝛾1)
−𝛼1 − 𝑑1 =

𝜑1(ℛ0
1 − 1)

(𝑑1 + 𝜇1 + 𝛾1)
− (𝛼1 + 𝑑1) > 0 

𝑎0 = (1 − 𝜃1𝜎1)Λ 𝛽1 + 𝜑1 = 𝜑1(ℛ0
1 − 1) > 0 

 

According to the Routh-Hurwitz criteria, the endemic equilibrium point is locally asymptotically stable if 

𝛼1 > 0 and 𝛼0 > 0. Therefore the endemic equilibrium point is locally asymptotically stable when ℛ0
1 > 1. 

 

3.2.2 Stability Analysis Group II 

Analysis of the stability of the equilibrium point of the measles model can be determined using the 

Jacobi matrix, the Jacobi matrix in equation (2) is obtained: 

 

𝐽(𝑆, 𝐼, 𝑅) =  [

−𝛽2𝐼2 − (𝑑2 + 𝛼2) 𝛽2𝑆2 0
𝛽2𝐼2 𝛽2𝑆2 − (𝑑2 + 𝜇2 + 𝛾2) 0
0 𝛾2 −𝑑2

] 

 
(22) 

 

The local stability analysis of the equilibrium point 𝐸2
0 can be determined using the disease-free 

equilibrium point 𝐸2
0. Then, in the same way, we obtain the characteristic equation 

 

|𝐴| = (−(𝑑2 + 𝛼2) − 𝜆) (
(1 − 𝜃2𝜎2)α1S1β2   

(𝑑2 + 𝛼2)
− (𝑑2 + 𝜇2 + 𝛾2) − 𝜆) (−𝑑2 − 𝜆) 

So the eigen values obtained are as follows: 

𝜆1 = −(𝑑2 + 𝛼2) 

𝜆2 = − 
(1 − 𝜃2𝜎2)α1S1β2   

(𝑑2 + 𝛼2)
− (𝑑2 + 𝜇2 + 𝛾2) 

𝜆3 = −𝑑2 
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Therefore, all the eigen values of the characteristic equation above are real numbers and are negative 

if 𝑅0 < 1. It can be concluded that the disease-free equilibrium point is locally asymptotically stable. 

The local stability analysis of the endemic equilibrium point 𝐸2
∗ can be determined in the same way 

as before so that the characteristic equation is obtained, namely: 

 

|𝐴| = (−𝑑2 − 𝜆) [𝜆2 + ((
(1 − 𝜃2𝜎2)α1𝑆1𝛽2 − 𝜑2

(𝑑2 + 𝜇2 + 𝛾2)
) − (𝑑2 + 𝛼2)) 𝜆

+ (1 − 𝜃2𝜎2)α1𝑆1𝛽2 − 𝜑2] 

 

From the above equation, the eigen values are 

𝜆1 = −𝑑2 

 

To find  𝜆2 and 𝜆3 by using characteristic equation where  

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0  

So, 𝜆2 and 𝜆3 satisfy the above equation, where  

 

𝑎1 = (
(1 − 𝜃2𝜎2)α1𝑆1𝛽2 − 𝜑2

(𝑑2 + 𝜇2 + 𝛾2)
) − (𝑑2 + 𝛼2) =

𝜑2(ℛ0
2 − 1)

(𝑑2 + 𝜇2 + 𝛾2)
− (𝛼2 + 𝑑2)

> 0 

𝑎0 = (1 − 𝜃2𝜎2)α1𝑆1𝛽2 − 𝜑2 = 𝜑2(ℛ0
2 − 1) > 0 

According to the Routh-Hurwitz criteria, the endemic equilibrium point is locally asymptotically stable if 

𝛼1 > 0 and 𝛼0 > 0. Therefore, the endemic equilibrium point is locally asymptotically stable when ℛ0
2 >

1. 

     

3.2.3 Stability Analysis Group III 

Analysis of the stability of the equilibrium point of the measles model can be determined using the 

Jacobi matrix, the Jacobi matrix in equation (3) is obtained: 

𝐽(𝑆, 𝐼, 𝑅) =  [

−𝛽3𝐼3 − (𝑑3 + 𝛼3) 𝛽3𝑆3 0
𝛽3𝐼3 𝛽3𝑆3 − (𝑑3 + 𝜇3 + 𝛾3) 0
0 𝛾3 −𝑑3

] 

 

(23) 

The local stability analysis of the equilibrium point 𝐸3
0 can be determined using the disease-free 

equilibrium point 𝐸3
0. Then, in the same way, we obtain the characteristic equation 

|𝐴| = (−𝑑3 − 𝜆)(
𝛽4𝛼3𝑆3

𝑑4
− (𝑑4 + 𝛾4 + 𝜇4) − 𝜆) (−𝑑4 − 𝜆) 

So, the eigen values obtained are as follows: 

𝜆1 = −𝑑4 

𝜆2 =
𝛽4𝛼3𝑆3

𝑑4
− (𝑑4 + 𝛾4 + 𝜇4) = −(𝑑4 + 𝜇4 + 𝛾4) (1 − 𝑅0) 

𝜆3 = −𝑑4 
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Therefore, all the eigen values of the characteristic equation above are real numbers and are negative if 

𝑅0 < 1. It can be concluded that the disease-free equilibrium point is locally asymptotically stable. 

The local stability analysis of the endemic equilibrium point 𝐸3
∗ can be determined in the same way 

as before so that the characteristic equation is obtained, namely: 

|𝐴| = (−𝑑3 − 𝜆)) [𝜆2 + ((
𝛼2𝑆2𝛽3 − 𝜑3

(𝑑3 + 𝜇3 + 𝛾3)
) − (𝑑3 + 𝛼3)) 𝜆 + 𝛼2𝑆2𝛽3 − 𝛾3𝜑3] 

From the above equation, the eigen values are 

𝜆1 = −𝑑3 

To find  𝜆2 and 𝜆3 by using characteristic equation where  

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0  

So, 𝜆2 and 𝜆3 satisfy the above equation, where  

𝑎1 = (
𝛼2𝑆2𝛽3 − 𝜑3

(𝑑3 + 𝜇3 + 𝛾3)
) − (𝑑3 + 𝛼3) =  

𝜑3(ℛ0
3 − 1)

(𝑑3 + 𝜇3 + 𝛾3)
− (𝛼2 + 𝑑2) > 0 

𝑎0 = 𝛼2𝑆2𝛽3 − 𝜑3 =  𝜑3(ℛ0
3 − 1) > 0 

According to the Routh-Hurwitz criteria, the endemic equilibrium point is locally asymptotically stable if 

𝛼1 > 0 and 𝛼0 > 0. Therefore, the endemic equilibrium point is locally asymptotically stable when ℛ0
3 >

1. 

 

3.2.4 Stability Analysis Group IV 

Analysis of the stability of the equilibrium point of the measles model can be determined using the 

Jacobi matrix, the Jacobi matrix in equation (4) is obtained: 

𝐽(𝑆, 𝐼, 𝑅) =  [

−𝛽4𝐼4 − 𝑑4 −𝛽4𝑆4 0
𝛽4𝐼4 𝛽4𝑆4 − (𝑑4 + 𝛾4 + 𝜇4) 0
0 𝛾4 −𝑑4

] 

 

(24) 

The local stability analysis of the equilibrium point 𝐸4
0 can be determined using the disease-free equilibrium 

point 𝐸4
0. Then, in the same way, we obtain the characteristic equation 

|𝐴| = (−(𝑑3 + 𝛼3) − 𝜆) (
𝛼2𝑆2𝛽3  

(𝑑3 + 𝛼3)
− (𝑑3 + 𝜇3 + 𝛾3) − 𝜆) (−𝑑3 − 𝜆) 

So, the eigen values obtained are as follows: 

𝜆1 = −(𝑑3 + 𝛼3) 

𝜆2 = (
𝛼2𝑆2𝛽3  

(𝑑3 + 𝛼3)
) − (𝑑3 + 𝜇3 + 𝛾3) 

𝜆3 = −𝑑3 

Therefore, all the eigen values of the characteristic equation above are real numbers and are negative 

if 𝑅0 < 1. It can be concluded that the disease-free equilibrium point is locally asymptotically stable. 

The local stability analysis of the endemic equilibrium point 𝐸4
∗ can be determined in the same way 

as before so that the characteristic equation is obtained, namely: 

|𝐴| = (−𝑑4 − 𝜆) [𝜆2 + ((
𝛼3𝑆3𝛽4 − 𝜑4

(𝑑4 + 𝜇4 + 𝛾4)
) − 𝑑4)𝜆 + (𝛼3𝑆3𝛽4 − 𝜑4)] 
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From the above equation, the eigen values are 

𝜆1 = −𝑑4 

To find  𝜆2 and 𝜆3 by using characteristic equation where  

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0  

So, 𝜆2 and 𝜆3 satisfy the above equation, where  

𝑎1 = (
𝛼3𝑆3𝛽4 − 𝜑4

(𝑑4 + 𝜇4 + 𝛾4)
) − 𝑑4 =

𝜑3(ℛ0
4 − 1)

𝑑4 + 𝜇4 + 𝛾4
− 𝑑4 > 0 

𝑎0 = 𝛼3𝑆3𝛽4 − 𝜑4 = 𝜑4(ℛ0
4 − 1) > 0 

According to the Routh-Hurwitz criteria, the endemic equilibrium point is locally asymptotically stable if 

𝛼1 > 0 and 𝛼0 > 0. Therefore, the endemic equilibrium point is locally asymptotically stable when ℛ0
4 >

1. 

 

3.3 Numeric Simulation 

To understand more clearly will be illustrated the simulation of the equilibrium point of the model 

equations (1), (2), (3), and (4), obtained 16 equilibrium point conditions. From the 16 equilibrium points 

above, three equilibrium points will be illustrated with parameter values [11] which differ from 𝑡 = 0 

weeks to 𝑡 = 2500 weeks. So as to get a figure of the SIR model of the spread of measles based on the age 

structure. 

a. Equilibrium Point Simulation 𝐸∗
1 

 

Figure 1. Equilibrium Point Simulation 𝑬∗
𝟏 

Based on Figure 1, visualize a comparison chart of infection cases in each age group. The pink graph 

is a graph of the infection population in the first group with the vaccination parameter of 85% and the 

vaccination effectiveness of 85% with the infection rate of 𝛽1 = 0,167989 × 10−8. The yellow graph is a 

graph of the infection population in the second group with 95% vaccination parameters and 80% 

vaccination effectiveness with an infection rate of 𝛽2 = 0,515425 × 10−7. The blue graph shows a graph 

of the infection population in the group with an infection rate of 𝛽3 = 0.262981 × 10−8, while the light 
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blue graph shows a graph of the infection population in the group with an infection rate of  𝛽4 =
0.285701 × 10−8. 

Figure 1 is a graph depicting the dynamics of measles distribution model in groups I, II, III, IV 

when ℛ0
1 < 1. In Figure 1 it can be explained that the infected population in each age group is zero. This 

means that under conditions of 𝐸∗
1 or ℛ0

1 < 1 there are no infected individuals at any age. 

 

b. Equilibrium Point Simulation 𝐸∗
8 

 

Figure 2 Equilibrium Point Simulation 𝑬∗
𝟖 

Based on Figure 2, visualize a comparison chart of infection cases in each age group. The pink graph 

is a graph of the infection population in the first group with the vaccination parameter of 85% and the 

vaccination effectiveness of 85% with the infection rate of 𝛽1 = 0,167989 × 10−8. The yellow graph is a 

graph of the infection population in the second group with 95% vaccination parameters and 80% 

vaccination effectiveness with an infection rate of 𝛽2 = 0,515425 × 10−7. The blue graph shows a graph 

of the infection population in the group with an infection rate of  𝛽3 = 0.262981 × 10−5, while the light 

blue graph shows a graph of the infection population in the group with an infection rate of 𝛽4 =
0.285701 × 10−5. 

Figure 2 is a graph depicting the dynamics model of measles distribution in groups I, II, III, IV when 

ℛ0
1,2 < 1 and ℛ0

3,4 > 1. In Figure 2 it can be explained that the infected population in groups I and II is 

zero, which means that in groups I and II there are no infected individuals, while the infected population in 

groups III and IV is heading to a point which means that in groups III and IV measles has spread. The 

infected population in groups III and IV experienced asymptotic stability with the population reaching 

values: 

𝐼3
∗ =

𝛼2𝑆2𝛽3 − (𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3 + 𝛼3𝑑3 + 𝛼3𝜇3 + 𝛼3𝛾3)

𝛽3(𝑑3 + 𝜇3 + 𝛾3)
= 16678.03 

𝐼4
∗ =

𝛼3𝑆3𝛽4 − (𝑑4
2 + 𝑑4𝜇4 + 𝑑4𝛾4)

𝛽4(𝑑4 + 𝜇4 + 𝛾4)
= 600270.4 

c. Equilibrium Point Simulation 𝐸∗
16 
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Figure 3 Equlibrium Point Simulation  𝐄∗
𝟏𝟔 

Based on Figure 3, visualize a comparison chart of infection cases in each age group. The purple 

graph is a graph of the infection population in the first group with a vaccination parameter of 85% and a 

vaccination effectiveness of 85% with an infection rate of 𝛽1 = 0,167989 × 10−6. The yellow graph is a 

graph of the infection population in the second group with 95% vaccination parameters and 80% 

vaccination effectiveness with an infection rate of  𝛽2 = 0,515425 × 10−3.The blue graph shows a graph 

of the infection population in the group with an infection rate of 𝛽3 = 0.262981 × 10−5, while the light 

blue graph shows a graph of the infection population in the group with an infection rate of 𝛽4 =
0.285701 × 10−5. 

Figure 3 is a graph that illustrates the dynamics model of the spread of measles in groups I, II, III and 

IV when ℛ0
1,2,3,4 > 1. In Figure 3 it can be explained that the infected population in groups I, II, III, and IV 

tends to reach the endemic equilibrium point, which means that in groups I, II, III, and IV measles has 

spread. The infected population in each group experienced asymptotic stability with the population reaching 

a value, namely: 

𝐼1
∗ = −

Λ 𝛽1𝜃1𝜎1 − Λ𝛽 + 𝑑1
2 + 𝜇1𝑑1 + 𝛾1𝑑1 + 𝛼1𝑑1 + 𝛼1𝜇1 + 𝛼1𝛾1

(𝑑1 + 𝜇1 + 𝛾1)𝛽1
 = 192193  

𝐼2
∗ =

(1 − 𝜃2𝜎2)α1𝑆1𝛽2 − (𝑑2
2 + 𝑑2𝜇2 + 𝑑2𝛾2 + 𝛼2𝑑2 + 𝜇2𝛼2 + 𝛾2𝛼2) 

𝛽2(𝑑2 + 𝜇2 + 𝛾2)
= 8217.082      

𝐼3
∗ =

𝛼2𝑆2𝛽3 − (𝑑3
2 + 𝑑3𝜇3 + 𝑑3𝛾3 + 𝛼3𝑑3 + 𝛼3𝜇3 + 𝛼3𝛾3)

𝛽3(𝑑3 + 𝜇3 + 𝛾3)
= 16678.03 

𝐼4
∗ =

𝛼3𝑆3𝛽4 − (𝑑4
2 + 𝑑4𝜇4 + 𝑑4𝛾4)

𝛽4(𝑑4 + 𝜇4 + 𝛾4)
= 600270.4 

 

 

4. CONCLUSIONS 

Based on this research, it can be concluded that the measles distribution model with four age groups 

where each age group inn able to interact with other age groups obtained 16 equilibrium points which are a 

combination of two equilibrium points for each group separately. Stability properties of each equilibrium 
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point can be determined using the value of the basic reproduction number (𝑅0) where the basic 

reproduction number is the product of each basic reproduction number of each age group which can be 

expressed by 𝑅0 = ∏ ℛ0
𝑖4

𝑖=1 . 

The results of the analysis are illustrated in a numerical simulation when all 𝑅0 values from each 

group are less than 1, the infected population from each group will lead into zero, means there are no 

infected individuals. Then when all 𝑅0 values from each group are more than 1, the infected population 

from each group will lead into a point of stability, it means that measles has spread within that group. 

Furthermore, when 𝑅0 in groups I and II was less than 1 and 𝑅0 in groups III and IV was more than one, it 

was found that age groups I and II were free of measles because there were no infected individuals, while in 

groups III and IV there was spread of disease measles. 
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