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The behaviour of rank correlation coefficients for incomplete data
Cahyo Crysdian a

aComputer Science Department, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia

ABSTRACT
This paper presents the analysis to disclose the behaviour of rank correlation coefficients under the 
complete and incomplete data condition. The main concern of this research is to deal with the 
missing data by preserving the originality of data pair rather than experiencing data deletion or 
imputation. The paper introduces the variability function that is developed for each correlation 
coefficient in order to disclose the mean and the variance for every possible data sequences. The 
comparisons between Kendall, Spearman, and the absolute distance measure for index ranking 
demonstrate the use of variability function under both the complete and incomplete data, in which 
it becomes a useful tool to describe the coefficient’s mechanism to proceed with a set of possible 
data sequences. The analysis proves that Kendall coefficient becomes the better method compared 
to Spearman and the absolute distant measure due to threefold, i.e. the ability to preserve the zero 
mean of variability distribution in complete data, the ability to survive from the missing data, and 
the ability to gain a higher rate of convergence in incomplete condition. Meanwhile, Spearman fails 
to preserve the original data pair under the incomplete condition due to direct measurement of 
rank distances.
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Introduction

Rank correlation coefficient aims to measure the asso-
ciation between a pair of ordinal variables representing 
the ranking of different items obtained from an obser-
vation, or the ranking of the same item from different 
observations. Two famous classical methods that are 
still widely used even today are Kendall τ and 
Spearman ρ (Alvo & Cabilio, 1995; Alvo & Park, 2002; 
Kendall, 1938; Spearman, 1904; Szmidt & Kacprzyk; Xu 
et al., 2010; Szmidt & Kacprzyk). These methods are 
formulated by 

τ ¼
nc � nd

1
2 nðn � 1Þ

(1) 

ρ ¼ 1 �
6
P

d2
i

nðn2 � 1Þ
(2) 

in which nc and nd denote the number of concordant 
and discordant, respectively; d is the distant between 
a pair of data rank, while n is the number of data. The 
methods produce a score in a range of � 1; 1½ � that 
represents a perfect opposite correlation to a perfect 
correlation, respectively, while score 0 means that the 
data pair is independent to each other. Unfortunately, 
these classical rank correlation coefficients were not 
designed to deal with the missing data that is often 

found in many practical observations. As shown by 
Equations 1 and 2, both Kendall and Spearman are 
influenced only by a single n number of data. This 
condition implicitly presents the need to achieve 
a complete data. Let ðA;BÞ ¼ ða1 � � � an; b1 � � � bnÞ

become a pair of distinct variables storing the result of 
an observation. Data completeness is achieved when 
"ai‚[ and "bi‚[; i ¼ 1 � � � n with [ denotes the 
missing data; hence, Aj j ¼ Bj j ¼ n. If somehow, without 
reducing its generality, 9ai 2 [; Aj j< n and 
"bi‚[; i ¼ 1 � � � n; Bj j ¼ n, thus Aj j� Bj j, then the 
data are incomplete. The incompleteness is mostly due 
to unmeasured objects in an observation.

However, it is difficult to always achieve data com-
pleteness in practical situations due to vary conditions 
such as hardware and time constraints that restrict 
object measurements. Therefore, in order to achieve 
a complete data, the removal of unobserved objects 
must often be taken prior to applying rank correlation 
coefficient that includes a list-wise or a pair-wise dele-
tion as noted by Alvo and Cabilio (1995), Alvo and Park 
(2002), and Raykov et al. (2014). In case of a large 
number of objects influenced by the deletion process, 
the data would suffer from significant losses that poten-
tially jeopardize its characteristic. This condition is 
undesired by most researchers. Therefore, Alvo and 
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Cabilio (1995) introduced the imputation approach 
based on distance metrics to extend the classical rank 
correlation coefficient based on Spearman and Kendall 
to deal with the missing data. The process was devel-
oped by associating and relabeling a set of items com-
posing the original incomplete data based on the 
compatibility between the incomplete and complete 
data. Later, Cabilio and Tilley (1999) and Alvo and 
Park (2002) extended this approach based on 
a multivariate statistical test. Kidwell et al. (2008) even 
employed Alvo and Cabilio’s approach for visualization 
purposes. Different techniques were presented by Albers 
and Teulings (1996) to introduce the correlation esti-
mate by incorporating additional information from 
further observations. This effort increased the size of 
data to become nþm1 þm2 with n is the size of the 
original variable that might contain missing data, while 
m1 and m2 were the size of additional observation 
obtained from the first and second variables being cor-
related, respectively. Meanwhile, Raykov et al. (2014) 
built a correlation estimate by developing a set of pre-
dictive rankings to the missing data that utilized the 
assumption of missing at random. This effort was 
extended by Eekhout et al. (2015) to include an auxiliary 
variable in terms of item score information. Recently, 
various methods have been introduced to predict the 
missing data such as Kim and Im (2018), Emmanuel 
et al. (2021), and (Mirzaei et al., 2022) to develop multi-
ple imputation approach, Yan et al. (2021) to predict 
missing attribute and restore big data by using K-means 
and Neural Network Backpropagation, and Rejeb et al. 
() to estimate missing values using Kohonen map.

Despite the progress being made to deal with the 
incomplete data, the original observed variables, 
however, become the most appropriate representa-
tion to describe system characteristics or phenom-
enon being investigated, regardless the condition that 
they might contain some missing data. Altering the 
original variables means putting into risk on chan-
ging or even diminishing data characteristics such as 
shown by (Zidan et al., 2017,), Kim et al. (2020), 
Abdel-Aty et al. (2020), and Mirzaei et al., 2022). 
Conducting imputation for a rank of indices jeopar-
dizes unique features of an index ranking. It is 
important to note that each index represents differ-
ent entity associated with an object in a sequence. 
Therefore, it would not be appropriate to replace an 
index with its neighbors or to modify an index 
ranking, since the action would cause the changes 
in the original variable. The last statement becomes 
the foundation of this study. Here, we assume that 
an entity corresponds to only an index, and there 
should be no repeated index in a ranking. Hence, 

any sequence of data in this study is recognized as an 
index ranking.

Meanwhile, a measure of similarity based on the 
absolute distance between a pair of index ranking 
ðA;BÞ ¼ ða1 � � � an; b1 � � � bmÞ is designed for incomplete 
data (Crysdian, 2018) as formulated by 

c ¼
1

minðn;mÞ

Xn;m

i¼1;j¼1

α
i � jj j þ 1

(3) 

with 

α ¼ 1 if ai ¼ bj
0 otherwise

�

(4) 

Equation 3 produces a range of score 0; 1½ � that presents 
the independent to tightly correlated data, respectively. 
This approach enables the similarity measure between 
a pair of index rankings in whatever condition they 
might have, and therefore it preserves the originality of 
the observed variables. For the case of a complete data in 
which n ¼ m, reaching c ¼ 0 is not possible due to 
"ai 2 B and "bj 2 A. While different condition is 
found from the incomplete data in which n, 
Equation 3 is capable of reaching c ¼ 0 due to the 
possibility that "ai‚B or "bj‚A.

From this point, the difference behaviour between var-
ied rank correlation coefficients, i.e. Kendall, Spearman, 
and the absolute distance measure, are noticeable. As 
noted by Xu et al. (2010), the problem of mathematical 
tractability is raised from this issue due to the function 
complexity to describe the unique mechanism of each 
coefficient. Hence, it is interesting to reveal how these 
coefficients behave for n!1 under the complete and 
incomplete conditions. The study aims to discuss the char-
acteristics of rank correlation coefficient to adapt with the 
complete and incomplete data by disclosing their beha-
viour for n!1 through the application of variability 
function introduced in Section Material and methods, sub 
section Coefficient’s behaviour for complete data. Here we 
show how variability function discloses the internal 
mechanism of each rank correlation coefficient. The rest 
of the paper is organized as follows. Section 2 discusses the 
complexity of complete and incomplete condition, and to 
introduce the variability function to analyze the behaviour 
of rank correlation coefficient by presenting the following 
materials, i.e. the complexity of data sequence under com-
plete and incomplete condition in Sub-Section 2.1, the 
behaviour of each rank correlation coefficient in the com-
plete data by formulating the variability function in Sub- 
Section 2.2, and the extension of variability function to 
adapt with the incomplete condition in Sub-Section 2.3. 
Section 3 discusses the characteristic of rank correlation 
coefficient by disclosing their behaviours under the 
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condition of complete and incomplete data through the 
application of variability function. The study is concluded 
in Section 4.

Material and methods

The complexity of complete and incomplete data

For the case of a complete data ðA;BÞ ¼ ða1 � � � an; b1 � � � bnÞ, 
the correlation between A and B is a permutation of n data items. 
Hence, the correlation score is distributed over a number of 
possible data sequence N as defined by 

NðnÞ ¼ n! (5) 

Different condition is found for incomplete data 
ðA;BÞ ¼ ða1 � � � an; b1 � � � bmÞ, in which n. Without redu-
cing any generality, this assumption states that the incom-
pleteness is suffered by B. Therefore, the possible data 
sequence of B is the permutation of the result of a union 
operation between the power set of A with the missing data 
that is represented by “0”. We use “0” for the notation of 
missing data since the data rank is a positive integer, while 
the number of “0” in B represent the number of missing 
data. For instance, A ¼ 1; 2; 3f g; hence, B can be in any 
permutation of the following combinations, i.e. 1; 2; 3f g, 

1; 2; 0f g, 1; 3; 0f g, 2; 3; 0f g, 1; 0; 0f g, 2; 0; 0f g, 3; 0; 0f g, 
and 0; 0; 0f g. For B ¼ f1; 0; 0g, which contains two miss-
ing data; hence, we can rewrite to become B ¼ f1; 01; 02g. 
There are 3! combination of data sequence that consists of 
f1; 01; 02g; f1; 02; 01g; f01; 1; 02g; f02; 1; 01g; f01; 02; 1g;
f02; 01; 1g. Possible sequence of data grows to become 

NðnÞ ¼ ð2n � 1Þn! þ 1 (6) 

It is important to note that the statement “+ 1” in the last 
fraction of Equation 6 is to accommodate 0; 0; 0f g. 
Here, we prefer to exclude it and compute only the 
possible sequence that carries component from the ori-
ginal data. Hence, total possible sequence of data can be 
reduced to become NðnÞ ¼ ð2n � 1Þn!. Moreover, it is 
possible to further reduce the possible sequence of data 
by removing the permutations from the combinations 
having repeated items, such as 1; 0; 0f g that comes from 

1; 01; 02f g and 1; 02; 01f g. Then, the total possible 
sequence of data in Equation 6 is reduced to become 

NðnÞ ¼
Xn

i¼1
Cn;iPn;i (7) 

with Cn;i ¼
n!

ðn� iÞ!i! and Pn;i ¼
n!
ðn� iÞ!

The comparison between the number of data sequences 
for both complete and incomplete data for any n as given in 
Table 1 shows the exponential growth of possible data 
sequences. It is difficult to obtain the mean and variance 
from rank correlation coefficients for large n since the 
computation involves a large number of possible data 
sequences. This problem restricts the effort to present the 
function behavior of rank correlation coefficients, particu-
larly under incomplete condition. Therefore, it is crucial to 
define the variability function that carries the smallest 
component of rank correlation coefficient. Then, the com-
putation to obtain the mean and the variance of correlation 
coefficients can be established using the predefined varia-
bility function as elaborated in the next sub-section.

Coefficient’s behaviour for complete data

For a pair of complete data ðA;BÞ ¼ ða1 � � � an; b1 � � � bnÞ, 
it is not possible to have a repeated index due to the nature 
of index ranking as stated previously, hence ai�aj and 
bi�bj, i�j, for i; j ¼ 1 � � � n. Kendall coefficient in 
Equation 1 is computed based on the number of concor-
dant and discordant as follows: 

nc ¼
Xn;n

i¼1;j¼1;i�j
conði; jÞ (8) 

nd ¼
Xn;n

i¼1;j¼1;i�j
disði; jÞ (9) 

with 

Table 1. Number of possible data sequence
n Complete data Incomplete data

1 1 1
2 2 6
3 6 33
4 24 208
5 120 1545
6 720 13,326
7 5040 130,921
8 40,320 1,441,728
9 362,880 17,572,113
10 3,628,800 234,662,230

..

. ..
. ..

.

n NðnÞ ¼ n!
NðnÞ ¼

Pn

i¼1
Cn;i Pn;i

conði; jÞ ¼ 1 if ððai > ajÞ and ðbi > bjÞÞ or ððai < ajÞ and ðbi < bjÞÞ

0 if otherwise

�

(10) 
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Hence, the variability function of Kendall coefficient vK 
for any n is also defined by the number of concordant 
and discordant as follows: 

vK ¼ nc � nd
¼ τ nðn � 1Þ=2 

with τ is the Kendall’s range of score in � 1; 1½ �, hence 
� 1 � τ � 1, therefore  

� nðn � 1Þ=2 � vK � nðn � 1Þ=2 (13) 

Thus, the variability function to satisfy Equation 13 is 

vK ¼
1
2

nðn � 1Þ � 2i (14) 

or 

vK ¼ �
1
2

nðn � 1Þ þ 2i (15) 

for i ¼ 0 � � � nðn � 1Þ=2. 

Proof:
The variability of Kendal’s score is governed by 

1
2 n n � 1ð Þ for n number of an index ranking as stated 
by Equation 1 that become the total number of nc and 
nd, hence 

ncþ nd ¼
1
2

nðn � 1Þ (16) 

Thus, the number of nc varies between a range of 
0; n n � 1ð Þ=2½ �. The same condition is applied to nd. 

To compute νK ¼ f nc; ndð Þ in Equation 12, we need 
to state the extreme maximum or the extreme mini-
mum that can be reached through Equation 16, i.e. 
1
2 n n � 1ð Þ or � 1

2 n n � 1ð Þ, respectively. We can then 
visit all possible νK in Equation 13 by using an order 
sequence of variable i in a range of 
0; n n � 1ð Þ=2½ �. QED

Based on (14), μK ¼ 0 for any n.

Proof: 

μK ¼

PNðnÞ

i¼1
τi

NðnÞ

¼
1
n!

Xn!

i¼1

nci � ndi

nðn � 1Þ=2

¼
2

nðn � 1Þn!

Xn!

i¼1
nci � ndi ð17Þ

Since 
Pn!

i¼1
nci � ndi includes all possible sequence that  

create the variability of Kendal’s function as stated in 
Equation 12, hence 

1
n!

Xn!

i¼1
nci � ndi ffi

1
nðn� 1Þ

2 þ 1

Xnðn� 1Þ=2

i¼0
vKi (18) 

In Equation 18, we include the denominator since it 
becomes the source of the nominator as stated in 
Equation 17. Therefore, replacing the nominator has 
a consequence of replacing the denominator in order to 
have a fair computation. It is important to note that the “+ 
1” statement in the denominator of the right side of 
Equation 18 represents the sources of i that are started 
from zero. The mean of Kendall coefficient can then be 
computed by inserting Equation 18 to Equation 17 as 
follows:

μK ¼
2

nðn � 1Þ nðn� 1Þ
2 þ 1

� �
Xnðn� 1Þ=2

i¼0
vKi 

¼
2

nðn � 1Þ nðn� 1Þ
2 þ 1

� �
Xnðn� 1Þ=2

i¼0

1
2

nðn � 1Þ � 2i 

¼
2

nðn � 1Þ nðn� 1Þ
2 þ 1

� � :0 

L ¼ 0 QED (19) 

Even though the denominator does not influence the 
computation due to the nominator’s symmetry that 

disði; jÞ ¼ 1 if ððai > ajÞ and ðbi < bjÞÞ or ððai < ajÞ and ðbi > bjÞÞ

0 if otherwise

�

(11) 
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produces zero mean in Equation 19, the statement of the 
denominator in Equation 18 is vital for the calculation 
of the variance. Hence, the variance of Kendall coeffi-
cient is obtained by 

σ2
K ¼

1
NðnÞ

XNðnÞ

i¼1
ðτi � μÞ2

¼
1
n!

Xn!

i¼1
τ2

i

¼
1
n!

Xn!

i¼1

nci � ndi
1
2 nðn � 1Þ

� �2

¼
4

n2ðn � 1Þ2n!

Xn!

i¼1
ðnci � ndiÞ

2
ð20Þ

The variance estimate of Kendall can then be computed in 
term of n by inserting Equation 18 to Equation 20 as 
follows: 

σ̂2
K ffi

4

n2ðn � 1Þ2 nðn� 1Þ
2 þ 1

� �
Xnðn� 1Þ=2

i¼1
v2

Ki 

ffi
8

n2ðn � 1Þ2ðnðn � 1Þ þ 2Þ

Xnðn� 1Þ=2

i¼0 

1
2

nðn � 1Þ � 2i
� �2

(21) 

Meanwhile, the variability of Spearman coefficient in 
Equation 2 can be defined by the total square distance 
from a pair of index ranking as follows: 

vS ¼
Xn!

i¼1
d2

i

¼
nðn2 � 1Þð1 � ρÞ

6 

Since the score of Spearman is in a range of ½� 1; 1�, 
hence � 1 � ρ � 1, therefore 

0 � vS � nðn2 � 1Þ=3 (23) 

For any n, the extreme minimum and maximum of νS in 
Equation 23 can be visited by using an order sequence of 
variable i in a range of 0 � � � n n2 � 1ð Þ=3½ �. Thus, the 
variability function to satisfy Equation 23 is 

vS ¼ i (24) 

for i ¼ 0 � � � nðn2 � 1Þ=3.
Based on Equation 24, μS ¼ 0 for any n. 

Proof: 

μS ¼
1
n!

Xn!

i¼1
ρi

¼
1
n!

Xn!

i¼1
1 �

6
P

d2
i

nðn2 � 1Þ

� �

Since 
Pn!

i¼1
1 � 6

P
d2

i
nðn2� 1Þ

� �

includes all possible sequence  

that create the variability function of Spearman, hence

1
n!

Xn!

i¼1
1 �

6
P

d2
i

nðn2 � 1Þ

� �

ffi
1

ðnðn2 � 1Þ=3Þ þ 1

Xnðn2 � 1Þ=3

i¼0
1 �

6vS

nðn2 � 1Þ

� �

(26) 

Justification of Equation 26 is similar to Equation 18 for 
Kendall which includes all possible variability and their 
sources. The mean of Spearman coefficient is computed 
by inserting Equation 26 to Equation 25 as follows: 

μS ¼
1

ðnðn2 � 1Þ=3Þ þ 1

Xnðn2� 1Þ=3

i¼0
1 �

6i
nðn2 � 1Þ

� �

¼ 0 QED 

The result of Equation 25 is consistent with the symme-
try of Spearman score. Hence, Spearman’s variance for 
complete data is defined by 

σ2
S ¼

1
n!

Xn!

i¼1
ðρi � μSÞ

2

¼
1
n!

Xn!

1¼1
ρ2

i

¼
1
n!

Xn!

i¼1
1 �

6
P

d2
i

nðn2 � 1Þ

� �2 

By inserting Equation 26 to Equation 28, we obtain 
variance estimate of Spearman coefficient as follows: 

σ̂2
S ffi

1
ðnðn2 � 1Þ=3Þ þ 1

Xnðn2� 1Þ=3

i¼1
1 �

6i
nðn2 � 1Þ

� �2

(29) 

The variability function of the absolute distance mea-
sure in Equation 3 is described by the total distance of 
a pair of index ranking as computed by  

vc ¼
Xn

i;j¼1

1
1þ i � jj j

¼
e1

1
þ

e2

2
þ � � � þ

en

n 
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with ei is the number of the absolute distance obtained 
by the correlation coefficient for i ¼ 1 � � � n. Right now, 
we just leave ei since it is difficult to compute their 
quantities for a single data pair. However, later on this 
section, we can obtain the pattern of parameter e for the 
whole data sequences. Since there exist c1 � � � cn! score 
obtained from n! data sequences for complete data: thus, 
the mean of correlation score is computed by  

μc ¼

Pn!
i¼1 ci

n!

¼
1
n

e1;1
1 þ

e2;1
2 þ . . .þ

en;1
n

� �
þ :::þ 1

n
e1;n!

1 þ
e2;n!

2 þ . . .þ
en;n!

n

� �

n!

¼

Pn!

i¼1
e1;i

1 þ

Pn!

i¼1
e2;i

2 þ . . .þ

Pn!

i¼1
en;i

n
nn!

(31) 

By scrutinizing data sequences for small n, we find that 
parameter e in Equation 31 are described by 

Xn!

i¼1
e1;i ¼ n! ¼ n n � 1ð Þ! ¼ nN n � 1ð Þ

Xn!

i¼1
e2;i ¼ 2 n � 1ð Þ n � 1ð Þ! ¼ 2 n � 1ð ÞN n � 1ð Þ

Xn!

i¼1
e3;i ¼ 2 n � 2ð Þ n � 1ð Þ! ¼ 2 n � 2ð ÞN n � 1ð Þ

..

.

Xn!

i¼1
en;i ¼ 2 n � n � 1ð Þð Þ n � 1ð Þ! ¼ 2 n � n � 1ð Þð ÞN n � 1ð Þ

(32) 

Inserting Equation 32 to Equation 31 delivers the fol-
lowing result 

μ̂c ¼
1
n

1þ
2
n

Xn� 1

i¼1

n � i
iþ 1

 !

(33) 

We could rewrite Equation 33 into a longer form to 
disclose the pattern of fraction units composing the 
mean for each n as follow: 

μ̂c ¼
1
n

1þ
2 n � 1ð Þ

n 1þ 1ð Þ
þ

2 n � 2ð Þ

n 2þ 1ð Þ
þ . . .þ

2 n � n � 1ð Þð Þ

n n � 1ð Þ þ 1ð Þ

� �

¼
1
n

X1 þ X2 þ . . .þ Xnð Þ

(34) 

The variance for large n is then computed by 

σ2
c ¼

Pn!

i¼1
ðci � μcÞ

2

n!
(35) 

In this case, ci ffi Xj for i ¼ 1 � � � n!; j ¼ 1 � � � n, with n!

and n become the sources of ci and Xj respectively. 
Hence, the variance estimate is obtained by inserting 
Equation 34 to Equation 35 as follows: 

σ̂2
c ¼

Pn

j¼1
ðXj � μcÞ

2

n

¼
1 � μc
� �2

þ
2ðn� 1Þ
nð1þ1Þ � μc

� �2
þ

2ðn� 2Þ
nð2þ1Þ � μc

� �2
þ � � � þ

2ðn� ðn� 1ÞÞ
nððn� 1Þþ1Þ � μc

� �2

n

¼

1 � μc
� �2

þ
Pn

i¼1

2ðn� iÞ
nðiþ1Þ � μc

� �2

n
ð36Þ

Incomplete condition

In order to adapt with the incomplete data ðA;BÞ ¼
ða1 � � � an; b1 � � � bmÞ in which 9ai‚B or 9bj‚A, hence 
n, it is vital to preserve both n and m as the domain of 
correlation. Altering either n or m by the deletion or 
adding more observation would make correlation run-
ning in a different environment. Even though some 
researchers or statisticians might be interested to observe 
the cause of missing data such as the missing completely 
at random (MCAR) or missing at random (MAR) in 
order to build the most suitable distribution for the sake 
of prediction or imputation; however, this issue is beyond 
the scope of the paper that concerns with the original data 
pair. Disclosing the survivability of rank correlation coef-
ficient under the incomplete data is more desired. 
Therefore, the analysis focusses on observing the effect 
of the missing data based on the mean and the variance 
for n!1.

For the case of Kendall coefficient, since the measure-
ment is possible to take place only for ai 2 B and bj 2 A; 
hence, it is necessary to introduce α in order to compute 
nc and nd by excluding ai‚B and bj‚A as follows: 

nc ¼
Xk

i¼1
α con i; jð Þ (37) 

nd ¼
Xk

i¼1
α dis i; jð Þ

with α is defined in Equation 4. Due to Equation 37, the 
variability function of Kendall coefficient in Equation 12 
is expanded to become:  

vk ¼ nc � nd
¼ Cn� h;2 � 2i

¼
1
2

n � hð Þ n � hþ 1ð Þð Þ � 2i
(38) 
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with h and i are the range of integers as the function of n in which 
h ¼ 0 . . . n � 2ð Þ and i ¼ 0 . . . n � hð Þ n � hþ 1ð Þð Þ=2.

Based on Equation 38, μK ¼ 0 for incomplete data. 

Proof: 

μK ¼

PN nð Þþ1
i¼1 τi

N nð Þ þ 1

¼
2

n n � 1ð Þ N nð Þ þ 1ð Þ

XN nð Þþ1

i¼1
nci � ndi

¼
2

n n � 1ð Þ N nð Þ þ 1ð Þ

Xn� 2

h¼0

Xn� hð Þ n� hþ1ð Þð Þ=2

i¼0
vK

¼
2

n n � 1ð Þ N nð Þ þ 1ð Þ

Xn� 2

h¼0

Xn� hð Þ n� hþ1ð Þð Þ=2

i¼0 
1
2

n � hð Þ n � hþ 1ð Þð Þ � 2i ¼ 0 

QED (39) 

Therefore, the variance of Kendall coefficient for incom-
plete data is described by 

σ2
K ¼

1
N nð Þ þ 1

XN nð Þþ1

i¼1
τi � μð Þ

2

¼
1

N nð Þ þ 1

XN nð Þþ1

i¼1
τi

2

¼
4

n2 n � 1ð Þ
2 N nð Þ þ 1ð Þ

XN nð Þþ1

i¼1
nci � ndið Þ

2

ffi
4

n2 n � 1ð Þ
2Tv

Xn� 2

h¼0

Xn� hð Þ n� hþ1ð Þð Þ=2

i¼0
vK

2

(40) 

with Tv is the total number of variation generated by vK 
in which 

Tv ¼
Xn� 2

h¼0

ðn � hÞðn � ðhþ 1ÞÞ
2

(41) 

Thus, the variance estimate is computed by 

σ̂2
K ¼

4
n2ðn � 1Þ2TV

Xn� 2

h¼0

Xðn� hÞðn� ðhþ1ÞÞ=2

i¼0 

1
2
ðn � hÞðn � ðhþ 1ÞÞ � 2i

� �2

(42) 

Meanwhile, it is not possible to define any variability 
function for Spearman under incomplete data without 
violating the correlation principle due to undefined 
distance d either for ai‚B or bj‚A. Referring to vS in 
Equation 22, d becomes the core of variability function 
for Spearman. In this case, defining d � n � 1 as the 

maximum distance for ai‚B or bj‚A violates to the 
range of score � 1; 1½ �, while defining d ¼ 0 produces 
weird measurement since 
ρ "ai‚Bor"bj‚A
� �

¼ ρ A ¼ Bð Þ ¼ 1. Therefore, Spear 
man fails to present its variability due to the failure to 
define the distance for the missing items. Here, we do 
not argue that Spearman is completely failing to deal 
with the missing data since any pairwise deletion or 
data imputation could be employed to achieve data 
completeness. However, it is vital to obey the consen-
sus stated in the beginning of this section to preserve 
the originality of data pair. It means taking any action 
to alter the data either by deletion or imputation vio-
lates the foundation of this study.

While the absolute distance measure in Equation 3 is 
intentionally designed to adapt with the incomplete data, 
the variability function defined in Equation 30 for complete 
data complies with the incomplete condition. Hence, it is 
merely to insert the missing data into its variability function 
in order to describe its mechanism under the incomplete 
condition as follows. The mean of this coefficient is com-
puted by 

μc ¼

PN nð Þþ1
i¼1 ci

N nð Þ þ 1
(43) 

with N nð Þ is defined in Equation 7. Here, the statement 
“+1” in the denominator is to accommodate the missing 
of all items either in A or B. Inserting Equation 30 to 
Equation 43, we obtain  

μC ¼

PN nð Þþ1
i¼1 vc=nð Þi
N nð Þ þ 1

¼

PN nð Þþ1

i¼1
e1;i

1 þ

PN nð Þþ1

i¼1
e2;i

2 þ . . .þ

PN nð Þþ1

i¼1
en;i

n
n N nð Þ þ 1ð Þ

(44) 

To compute Equation 44, we need to modify 
Equation 32 for incomplete data by inserting the 
number of possible data sequences in Equation 7. 
Hence, we obtain 

XNnþ1

i¼1
e1;i ¼ nN n � 1ð Þ ¼ n

Xn� 1

i¼0
Cn� 1;iPn� 1;i

XNnþ1

i¼1
e2;i ¼ 2 n � 1ð ÞN n � 1ð Þ ¼ 2 n � 1ð Þ

Xn� 1

i¼0
Cn� 1;iPn� 1;i

XNnþ1

i¼1
e3;i ¼ 2 n � 2ð ÞN n � 1ð Þ ¼ 2 n � 2ð Þ

Xn� 1

i¼0
Cn� 1;iPn� 1;i

..

.

XNnþ1

i¼1
en;i ¼ 2 n � n � 1ð Þð ÞN n � 1ð Þ ¼ 2 n � n � 1ð Þð Þ

Xn� 1

i¼0
Cn� 1;iPn� 1;i

(45) 
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Inserting Equation 45 to Equation 44, we obtain 

μ̂C ¼
1
n

nþ 2
Xn� 1

i¼1

n � i
iþ 1

 ! Pn� 1

i¼0
Cn� 1;i Pn� 1;i

1þ
Pn

i¼1
Cn� 1;i Pn� 1;i

0

B
B
@

1

C
C
A

(46) 

To simplify Equation 46, we can write 

β ¼
Pn� 1

i¼0
Cn� 1;iPn� 1;i

1þ
Pn

i¼1
Cn� 1;iPn� 1;i

, hence  

μ̂C ¼
β
n

nþ 2
Xn� 1

i¼1

n � i
iþ 1

 !

¼
1
n

nβþ
2β n � 1ð Þ

1þ 1
þ

2β n � 2ð Þ

2þ 1
þ � � � þ

2β n � n � 1ð Þð Þ

n � 1ð Þ þ 1

� �

¼
1
n

X1 þ X2 þ � � � þ Xnð Þ (47) 

The variance is then computed by 

σ2
c ¼

PN nð Þþ1
i¼1 ci � μc

� �2

N nð Þ þ 1

ffi

Pn
i¼1 Xi � μc
� �2

n

(48) 

The variance estimate for the absolute distant-based 
measure is obtained by inserting Equation 47 to 
Equation 48 as follows: 

Result and discussion

The behaviours of Kendall, Spearman and the absolute 
distance measure are asymptotically normal under the 
complete data with Nð0; σ̂2

KÞ, Nð0; σ̂2
SÞ, and Nðμ̂c; σ̂

2
c Þ, 

respectively. In this case, σ̂2
K is defined by Equation 21, σ̂2

S 
is defined by Equation 29, while μ̂c and σ̂2

c are defined by 
Equation 33 and 36. It is worth noting that σ̂2

K , σ̂2
S , μ̂c, and 

σ̂2
c are unbiased since all parameters are perfectly described 

by their variability function, i.e. vK for Kendall in both 
Equation 14 and 15, vS for Spearman in Equation 24, and 
vc for the absolute distance measure in Equation 30, 
respectively. Graphing the variance estimates of Kendall, 
Spearman and the absolute distance measure as defined by 
Equation 21, 29, and 36, respectively, produces Figure 1 
that discloses the following phenomenon, i.e. both Kendall 

and Spearman share similar characteristics for large n, and 
differ significantly to the absolute distance measure as seen 
by Figure 1. In this case, Kendall and Spearman directly 
lead to the convergence, with Spearman has the faster 
convergence compared to Kendall based on the growth 
of n. Meanwhile, the absolute distance measure presents 
a ripple at n � 4 before leading to the convergence at n> 4. 
Therefore, sorting the rate of convergence from the fastest 
to the slowest is demonstrated by Spearman, Kendall and 
the absolute distance measure. The higher convergence 
rate of Spearman compared to other methods is caused 
by the larger size of Spearman variability that grows expo-
nentially based on the growth of n as shown by Figure 2. 
This condition also discloses the slower convergence rate 
of the absolute distance measure compared to other meth-
ods due to the less number of variability based on the 
growth on n.

Meanwhile, graphing the variability function of each 
rank correlation coefficient as defined by vK in both 
Equation 14 and 15, vS in Equation 24, and vc in 
Equation 30 for Kendall, Spearman, and the absolute 
distance measure, respectively, reveals the distribution 
of variability function based on the growth of n as 
shown by Figure 3A-C. Figure 3A depicts Kendall varia-
bility function that perfectly distributes around zero 
mean. It is different to the variability function of 
Spearman that distributes above zero and grows expo-
nentially with the n as shown by Figure 3B, and the 
absolute distance measure that distributes in a range of 
0; 1½ � as shown by Figure 3C. It shows that Kendall is 

a well-designed method for a rank correlation coeffi-
cient that even preserves the zero mean for any n by its 
variability function.

For the incomplete data, only Kendall and the absolute 
distance measure survives. It is due to the flexibility to 
adapt with the missing data by accepting α. It is important 
to note that the mechanism to employ α is different from 
the deletion mechanism since the former preserves the 
originality of data pair as the domain of correlation. In 
this case, Kendall and the absolute distance measure are 
asymptotically normal with Nð0; σ̂2

KÞ and Nðμ̂c; σ̂
2
c Þ

respectively, in which σ̂2
K , μ̂c and σ̂2

c are unbiased as defined 
by Equation 42, 46, and 49, respectively. Comparing the 
variance estimates of Kendall against the absolute distance 

σ̂2
c ¼

1
n

nβ � μc
� �2

þ
2β n � 1ð Þ

2
� μc

� �2

þ
2β n � 2ð Þ

3
� μc

� �2

þ . . .þ
2β n � n � 1ð Þð Þ

n � 1ð Þ þ 1
� μc

� �2
 !

¼
1
n

nβ � μc
� �2

þ
Xn� 1

i¼1

2β n � ið Þ

iþ 1
� μc

� �2
 !

¼
1
n

nβ � μc
� �2

þ
Xn� 1

i¼1

2β n � ið Þ

iþ 1
� μc

� �2
 ! (49) 
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measure for the incomplete data produces a graph in 
Figure 4 that shows Kendall demonstrating a higher rate 
of convergence compared to the absolute distance mea-
sure. This phenomenon is caused by the growth of varia-
bility size of Kendall in incomplete data that grows 
exponentially with the growth of n, a similar condition to 
Spearman for complete data, while the variability size of 
the absolute distance measure is the same with the 

complete condition as shown by Figure 5. In this case, 
the absolute distance measure presents a ripple for small n, 
i.e. n � 6. Meanwhile, Kendall still presents a significantly 
different characteristics to the absolute distance measure 
for large n with σ̂2

K > σ̂2
c due to a wider range of Kendal’s 

score in � 1; 1½ � compared to the range of the absolute 
distance measure in 0; 1½ �. This condition is disclosed by 
graphing the variability function of Kendall for incomplete 

Figure 2. The variability size of kendall, Spearman, and the absolute distance measure based on the growth of n for complete data.

Figure 1. The variance estimates for kendal, Spearman, and the absolute distance measure under complete data condition based on 
the growth of n.

RMS: RESEARCH IN MATHEMATICS & STATISTICS 9



Figure 3. The variability distribution for (A) Kendall, (B) Spearman, and (C) The absolute distance measure.
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data as shown by Figure 6 that shows Kendall still preser-
ving the distribution of variability function similar to the 
complete data, even though the mean is moved away from 
zero by the growth of n due the incomplete condition. 
While the variability function of the absolute distance 
measure for the incomplete data is the same with the 
complete data as presented in Figure 3C that occupies 
the range 0; 1½ �.

Meanwhile, the comparisons between the variance 
obtained from the complete data versus the incomplete 
condition for both Kendall and the absolute distance mea-
sure as given in Figure 7A and 7B, respectively, disclose 
a fact that the incomplete condition produces smaller 
variance than its counterpart. This condition is due to 
the larger number of possible data sequences for incom-
plete data as shown by Table 1 occupying the same range 

Figure 4. Variance estimates for Kendal and the absolute distance measure under incomplete condition based on the growth of n.

Figure 5. The exponential growth of Kendall’s variability size for incomplete data compared to the original Kendal and Spearman in 
complete data and the absolute-distance measure.
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Figure 6. The variability function of Kendall for incomplete data.

Figure 7. Variance estimates for complete vs incomplete condition for (A) Kendall and (B) The absolute distance measure.
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of variability as the complete data. For the case of Kendal, 
the complete data demonstrate higher rate of convergence 
than the incomplete condition as shown in Figure 7A. This 
phenomenon can be explained by contrasting the variabil-
ity function of Kendall in both complete and incomplete 
condition as shown in Figure 3A and 6. In this case, even 
though the distribution of variability function in both 
condition is similar, however, the growth of data sequence 
in incomplete condition as described by Section 2A forces 
the mean to move away from zero by the growth of n. This 
condition causes the extension to achieve the convergence 
by Kendall in incomplete data.

While for the case of the absolute distance measure, 
both the complete and incomplete data show a similar 
rate of convergence as shown by Figure 7B. This condi-
tion is due to the same distribution of variability func-
tion as shown by Figure 3C and the same variability size 
as shown by Figure 2 and 5 for complete and incomplete 
data, respectively. In this case, the lower slope of var-
iance estimate in incomplete data as shown by Figure 7B 
is due to the larger size of incomplete data sequences 
compared to the complete condition as described in 
Section 2A.

Conclusion

The variability function of rank correlation coefficients 
enables the expression of the mean and variance under 
the complete and incomplete data. It helps to solve the 
mathematical tractability of variance as noted by Xu et al. 
(2010). Here, we find that Kendall becomes the better 
method over Spearman and the absolute distance measure 
due to the following reason. Under the complete data 
condition, Kendall presents the variability function that 
perfectly distributes around the zero mean, which is differ-
ent from other methods that fail to preserve the zero mean. 
In this case, Spearman shows the distribution of variability 
function above zero, while the absolute distant measure is 
in 0; 1½ �. Although Spearman gains a higher convergence 
rate of variance, the distribution of variability function 
proves that Kendall is a well-designed method to conduct 
rank correlation for complete data. Under the incomplete 
condition, Kendall and the absolute distant measure exhi-
bits the capacity to adapt with the missing data. In this case, 
Kendall needs to improve the definition of concordant and 
discordant by accepting alpha in order to deal with the 
missing data, while the absolute distant measure has this 
mechanism in its original design. However, Kendall shows 
a higher convergence rate than the absolute distant mea-
sure under the incomplete condition, and is able to pre-
serve the zero mean of variability distribution to some 
extent of n. Meanwhile, Spearman fails to deal with the 

incomplete data. A lesson learned from Spearman incap-
ability to deal with the missing data is due to the 
metrics that relies only on a direct measurement without 
preparing to deal with the unmeasured condition. 
Therefore, it is crucial to develop a normalization approach 
inside the metrics in order to adapt with varying input that 
potentially range from the normal to the extreme or 
beyond the normal condition. On the other hand, 
Kendall’s indirect measurement to compute each data 
position in a ranking through the number of concordant 
and discordant survives the coefficient from the incomplete 
condition.
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