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Molecular breeding for the
development of drought stress
tolerance in soybean
Euka Sandi Savitri

Biolgy Department, Universitas Islam Negend Maubina Malik Ihrahim Maling,
Malang, Indonesisa

1. Molecular breeding for plant breeding

Food needs are considerably increasing due to the rapid growth of the world population
and the food or fead industry. However, food producers seem unable to meet consumers’ in-
creasing and variad food needs. Breeding activities must be more intensive to solve the

roblem.
8 Plant breeding isa methad that exploits the genetic potential of plants to maximize the ex-
pression of plants’ genetic prospects under certain environmental conditions (Guzhov, 1989;
Steskopl et al, 1993). Plant breeding aims to maximize plants’ genetic potentials by assem-
bling new superior cultivars that are high-yield and high-quality, resistant to biotic and abi-
otic constraints (Shivanna and Sawhney, 1997; Mayo, 1980).

Although conventional breeding technology has proven successful in increasing crop pro-
duction and feeding the current global population, canventional breeding has unavoidable
limitations, particularly in terms of the time required to introgress the desired genes. Besides,
the number of genotypes to handle, especially at the beginning of the selection, is vast,
influencing the number of laborers required.

Advanced technology is necessary to overcome the limitations of conventional breeding
techniques and accelerate the breeding program’s ultimate goal. The breeding program is es-
sential to overcome food problems in the future. The solution to the obstacles in conventional
breeding is starting to get the discovery of molecular markers. The first-known molecular

(7L Maping s Crp b frovwesss 311 Copyrghe © 12§ Blawtas lnc. A rghos sesrvad
Sttt v 100 LA BITS-O- XIS-RIA-2 T 2- X
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markers were protein markers genetically attributed as isozyme markers (Hunter and
Markert, 1957).

Isozyme markers are usually used in plant genetic analysis, but the markers are still very
limited in number. Besides, specdific enzyme systems are affected by tissue development reg-
ulation; they only express a characteristic for particular tissues. These factors are the main
obstacles to using isozyme markers in exploiting plants’ genetic potentials (Hamrick and
Gode, 1989).

The aim of plant breeding is improving the genetic traits of plants. This activity produces
superior cultivars, known as plants with excellent characteristics that are beneficial to
humans. In general, breeding consists of two inseparable stages, the formation of diversity
and selection. Diversity formation is the primary activity that aims at obtaining diverse plant
genetic material. Various ways make to form such a diversity: collection, introduction, cross-
ing, mutation, palyplaidization, transgenic, and genome editing. Selection is an activity of
selecting plants with desired properties under the objectives of a plant breeding program.
Selection is essential in plant breeding.

The basic concept in selecting is to carefully choose individual plants with the best trails
from a set of existing plant populations. In the selection process, breeders take various desir-
able characteristics (such as seed size, fruit color, tuber weight, efc.) concerning their physical
appearance. Unfortunately, the physical properties used as the basis of the selection are un-
stable. The expression of plants’ physical properties resulls from gene arrangement
influenced by various factors like environment and growth phases.

Plants with the same gene arrangement, for example, may have different physical appear-
ances at different grow th phases in different environments. Sdection based on morphological
characters is complicated to do with plant breeding activities. However, biotechnology's re-
cent development allows breeders to use molecular markers to assist them in the selection

The use of DN A markers as a tool for selecting Marker- Assisted Selection (MAS)is more
profitable than phenotypic selection. Selection with the molecular markers help plant ge-
netic traits and are not influenced by environmental factors. As aresult, plant breeding ac-
tivities, regardless of extra cost to spend, become more precise, faster, and relatively more
efficient.

Plant phenotypic-based selection has several weaknesses, it takes a long time to select, and
itis not easy to choose precisely the targel genes expressed in morphological or agronomic
traits. Furthermore, such a canventional selection is not valid in the selection involving a large
population. Finally, a gene-linking phenomenon between the desired and undesirable char-
acteristics is difficult to separate during the crossing process.

Malecular marker refers to diff erent sequences of Deaxyribose Nucleic Acid (DNA), which
are the main elements that make up the genes. This difference can distinguish one individ ual
from another. The basic concept of molecular markers is that one individual has a unique
DNA sequence to another individual so that these distinctive features are used as markers.
The advantage of DNA markers in makinga selection is that they are stable, and notaffected
by the growing phases or environmental conditions. An individual gene arrangement will
remain the same at various stages of growth and in different ecological conditions.

DNA markerscan be an excellent tool in the selection process. The various DNA markers
such as Random Amplified Polymorphic DN A (RAFD), Simple Sequence Repeat (SS5R), Inter-
SSR (ISSR), Amplified Fragment Length Polymarphism (AFLP), transposon-based markers,
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and Single Nudeotide Palymaorphism (SNFP) have provided significant results in improving
the properties of various crop commadities such as yield, quality, resistanceto drought stress,
salinity, and pest attacks.

Molecular markers have continued to develop in various ways. They are inseparable from
the development of Next-Generation Sequencing (NGS) technology, enabling fast and inex-
pensive plant genome tracing, bioinformatics, and comfortable and affordable molecular
detection techniques. Based on its superiarity, DNA markers are potential tools, the selection
process of which increases the effidency and effectiveness to improve plant traits through
plant  breeding (https://breeding fapertaugmacid/2019/07/23/seleksi-berbantuan-
marka-maolekuler-dalam-pemuliaan-tanaman).

1.1 DNA markers

In line with DNA marker-based technology development, three types of DINA markers
have been found recently, with all their ad vantages and disadvantages. The three types of
DNA markers are: (1) markers based on DINA hybridization, such as Restriction Fragment
Lergth Polymorphism (RFLP); (2) markers based on Polymerase Chain Reactions (PCR)
using nucleotide sequences as primers, such as RAPD, and AFLP; and (3) markers based
on PCR using primers that incarporate specific complementary sequences in the target
DNA, such as Sequence Tagged Sites (STS), Sequence Characterized Amplified Regions
{SCARSs), SSRs or microsatellites {microsatellites), and SNPs.

1.2 RFLP (restriction fragment length polymorphism)

RFLP analysis is a Southern hybridization procedure (Bostein e al., 1980). Hybridization of
DNA doned for DNA fragments in a sample of a restriction enzyme that cuts use for DNA
variation or palymarphism. RFLP markers are a combination of specific enzyme probes. The
primary source of probes for mapping RFLPs in plants are cDNA and Psfl clones of genome
clones (Tanskley et al., 1982). This marker is codominant, so it is perfect for comparative ge-
nome mapping.

However, RFLP markers, when used as a selection tool, have some canstraints: (1) In some
species, the level of DNA polymorphism is very deficent; (2) It is energy- and time-
cansuming; (3) the required quantity and quality of the DNA are very high; (4) the hybrid-
ization procedure is complicated, thus complicating the automation; and (5) It requires probe
libraries far previously unexplored plant species (Prasanna, 2002).

1.3 RAPD (random amplification of polymorphic DNA)

The working principleof RAPD markers uses the differences of PCRamplification in DNA
samples from short oligonudeotide sequences, which are genetically the dominant marker
group (Williams et al., 1990; Welkh and McClelland, 1990). RAPD primers are random and
usually 10 nucleotides in length. The number of PCR amplification produdts is directly related
to the number and arientation of sequences complementary to primers in the plant genome.

The use of RAPD markers, to some extent, is quite simple because it requires a small quan-
tity of DN A, cost-effective, easy to learn, and easy to get. The weaknesses are that the degree
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of reproducibility is different across laboratories or experimental results in the same labara-
tory. Itis susceptible to variations in DN A concentrations, and it requires primary concentra-
tion and temperature cycle conditions at the time of testing. Besides, RAPD markers are
dominant and cannot display homologous DNA sequences between fragments of nearly
the same size (Riedy & al, 1992).

1.4 SCARs (sequence characterized amplified regions)

The SCAR and STS markers are PCR-based markers obtained by sequencing RFLFP, RAFD,
and AFLP fragments or genes with the recognized sizes. SCAR primers are 18-25 nucleotides
in length. The reproducibility and usability of SCAR markers are much higher than those of
RAFD markers. Although the SCAR markers are genetically dominant, they can be converted
into codominant markers by truncation using restriction enzymes.

STS markers are used in genetic mapping. They are codaminant, and they can produce
stable, repeated amplification. The STS technique is quickly adopted and accepted in terms
of automation. Its limitations have not been found much because of the polymorphic 5TS
markers in the cultivated plants.

1.5 SSR (simple sequence repeat)

Microsatellite markers are DN A sequences that are shart and repeated in tandem with two
to five nucleotide units scattered and covering the entire genome, espedally in eukaryotic or-
gansms. Microsatellites use genetic characterization and crop mapping, including maize,
rice, grapes, soybeans, millet, wheat, and tomatoes (Gupta et al, 1996; Powell e al., 1996).
PCR amplified the micosatellite’s primary pairs based on the conservation of the
flanking-region markers for a chromosome gene.

According to Powell et al. (1996), several considerations for the use of microsatellite
markers in genetic studies include: (1) the markers’ cod ominance and abundant genome lo-
cation that evenly distributed, and it is many various alleles at the locus easily determined; (2)
The test instrument has very high reproducibility and accuracy; (3) It isa reliable toaol for ge
notype differentiation, evaluation of seed purity, map ping, and genotype selection of thede
sired character;and (4)it is used for population genetic studies and genetic diversity analysis.
The weakness of this technique is that SSR markers are not available for all plant species, and
designing a new primer is quite expensive and time-consuming.

1.6 AFLP (amplified fragment length polymorphism)

The AFLP marker is a type of marker developed basad on selective amplification of the
total genomic restriction DNA fragments with restricted end anuclease enzymes. The ampli-
fication separated uses electrophoresis, then visualized using autoradiography or silver
staining (Vos et al., 1995). These markers are similar to the RAPD ones, but they have more
specific primers and more numerous ribbons. The AFLP marker is categorized as a codom-
inant marker, although often treated as the dominant marker. It is challenging to differentiate
the band intensity between homozygous and heterozygous dominant.

The advantages of the AFLP technique, according to Vos et 2l (1995), are that: (1) itdces not
require sequence information from the genome and the same oligonudeotide kit when
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analyzed and applied to all plant species; {2) The amplification is stable, and the repetition
rate and variability are very high; (3) It has high efficiency in locus mapping because ance
amplification can coverseveral loci; (4) It can be used for fingerprint analysis of all DNA re-
gardlessits complexity and origin; and (5) It can act as a bridge between the genetic map and
the physical map of the chromosomes. The imitation of the AFLP technique is that itis com-
plicated to apply. It requires more time, superior skills, and the procurement of equipment
and materials is very expensive.

1.7 SNPs (single nucleotide polymorphism)

SNF markers are “third-generation markers.” This marker is a point mutation where an-
other nuclentide substitutes ane nuclentid eat a particular locus. SNPs are a more general type
of differentiating sequences amang alleles, codominant in nature, and signifying polymar-
phic markers from an inexhaustible source to use high resolution in genetic mapping ofchar-
acters. The detection of SNP markers is codominant, based on primary amplification in the
sequence informa tion for specific genes. The SNP was a marking test on rice and maize, where
the genomic information is quite complete (Philips and Vosil, 1994).

The advantage of the SNP technique is mare comfortable to apply than the SSR or AFLP
methods. They are mare useful when several SNP lod are very close together to define hap-
lotypes and the devdopment of haplotype tags. The SNP technique’s weakness is required
sequence information for a gene as the target of analysis, and the procurement of toals
and materials requires a very high cost (Doerge and Churchill, 1996).

1.8 Application of MAS in plant breeding

In the MAS context, DNA-based markers can be useful if used for three primary purposes:
(1) proper identification of parental lines for the improvement of a character for spedific pur-
poses; (2) tracing favorable dominant or recessive alleles in each crosses generation, and (3)
identification of target individuals according to the desired character among the segregated
offspring, based on the allelic compasition of the cross part or of the whole gename.

1.9 MAS for qualitative character improvement

Qualitative character refers to the expression of a target character controlled by one gene or
genes that is/are fully responsible for the occurrence of phenotypic variations in the charac-
ter. Introgressi on of specific genes (genomes) from the donor line to the recipient line through
the backaross method can significantly improve the target character. The conventional selec-
tion uses the methods, but it takes a long lime to introgress a single d ominant, recessive gene
(Hajiagatabar et al, 2019).

1.10 MAS for qualitative character improvement

The most impartant agronomic plant characters are very complex and controlled by sev-
eral genes. The disengagement of simple characters controlled by one or more significant
genes resulls in the improved polygenic characters through MAS, which is very complicated.
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The difficulty in manipulating quantitative characters assodated with complex genetic char-
acters is because their expression invaolves many genes while each gene affects the phenotypic
appearance of small plants. Also, the interaction among genes {epistasis) is an inhibiting fac-
tor while manip ulating quantitative characters. Thus, mulliple genome locations and manip-
ulating simultaneously have a real effect on a genome location in individual plants, although
this is not easy toda.

In this case, the field test repositioning accurately characterizes the QTL effect by testing
its stability in several different environments. Continuous evaluation of the interaction of
Quantitative Trait Loci (QTL) with the environment (Q « E) is one of the significant limita-
tions of MAS efficiency (Beavis, 2019). Epistasis interactions in different regions of the ge-
nome may also influence testing for QTL effects. If all the genome sites involved in the
interaction do not merge in the selecion scheme, QTL's effect on the selection process is
biased.

In addition to developing QTL mapping, which requires testing in recent years, some bar-
riers limit the efficient use of QTL mapping information an plant breeding via MAS. The maost
prominent obstacles, according to Tanskley and Nelson (1996) areas follows: (1) identification
of a limited number of major players (QTLs) controlling for specific characters: {2) deficiency
of experiments in QTL analysis, particularly in overestimating or underestimating the num-
ber and effects of QTL; {3) lack of general character in QTL validation {markers) assodated
with the application of different sets of breeding materials; (4) strength of QTL x E interac-
tions; and (5) difficulty in evaluating epistatic effects with accuracy.

2. Plant breeding through mutation induction

Soybean production can be carried out in two ways: expanding the planting areaand in-
creasing the production by improving the cultivation system and superior varieties. The in-
creasing genetic diversity through an introduction. hybridization, selection, biotechnology,
and mutation. Mutation is a technique developed extensivey toincrease plant genetic diver-
sity and acquirenew genelicimprovement plants. Mutationis a process where genes undergo
changes or all kinds of genetic changes that cause phenotypic changes from one generation to
the next ( Ashadi, 2013 ). Mutations that occur ¢an be inherited and can return to normal (epi-
genetics). Muta gens cause physical and chemical changes that can occur in the genome, chro-
mosome, and DNA levels.

Mutations can occur na turally or intentionally ind uced for specific purpaoses far plant ge-
nelic repair. Natural mutations might happen due to the presence of sunlight or electrical en-
ergy such as lightning. The artifidal mutations for plant breeding purposes to provide
mutagens. Two groups of mutagens are mutants of physical mutagers and chemical muta-
gens. Physical mutagens inchude X-rays, gamma rays, and ultraviolet rays; whereas, chemical
mutagens include Ethyl Methane Sulfonate, Diethyl Sulfate, Ethyl Amin, and Colchicine. The
advantage of using gamma raysis that the dose is accurate, and the penetration of irradiation
into cells is homogeneous. Meanwhile, the benefit of using chemical mutagens is that they
have a high mutation rate and dominated point mutations {Savitri et al., 2013).
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Mutations are divided into small gene mutations and chromosome mutations. Small mu-
tations occur in the molecular arrangement of a gene ar DN A while the gene locus are fixed.
Mutations of this type can give rise to alleles. Meanwhile, large mutations refer to a change
that occurs in the structure and arrangement of chramosomes. Gene mutations arecommonly
called point mutations. This mutation occurs d ue to changes in the base sequence of DNA or
changes in the nudeotide of DNA

The use of gamma rays has developed in various fields for human welfare, such as health,
industry, food preservation, and agriculture. Gamma rays are dectromagnetic waves that
have a strong penetrating power. One source of gamma rays comes from 60 Co. Gamma rays’
penetrating power is massive and used in plant breeding to create new genetic diversity in
superior assembly varieties (Ashadi, 2013).

Flant breeding uses mutation techniques to obtain new traits from plants through changes
in the parents’ plant genetics after receiving gamma radiation at specific doses (Mugliono and
Dewi, 2009). The advantages of mutation techniques, among others, are that one of the char-
acteristics of an improving variety without changing other trails, they give rise to new traits
that are not owned by the parent, they can separate gene linkages, and the method is com-
plementary to other techniques, in conjunction with other techniques like hybridization
and biotechnology (Nunoo et al,, 2014).

3. Improvement of drought stress tolerance in soybean

The research of the drought-tolerant gene GmILEA-D11 based on PCR sequendng has the
purpase identified of the gene drought tolerance. The cond itions of plant response to adapt to
drought by inducing particular genes (Zhu et al., 1997; Dure, 1993) include changes in gene
expression related to drought tolerance. One of the drought tolerance genes is the LEA-D11
gene, which encodes dehydrin protein {Ingram and Barterls, 1996; Thomashow, 1999).

The research resulls that the GmLEA-DI11 gene sequences belonged to similar drought-
tolerant varieties (Tanggamus, Nanti, Seulawah, and Tidar) and moderate tolerance (Wilis
and Burangrang). However, the GmLEA-D11 gene sequence detected in the drought suscep-
tible variety Detam-1 differs from the drought-tolerant and moderate varieties. This study’s
result indicates that the GmLEA-D11 gene sequence was successful as molecular markers,
and they can vary drought susceptible from drought-tolerant (Arumingtyas and
Sawvitri, 2013).

Drought is one of the environmental pressures that limit plant growth and productivity.
Drought stress causes many changes, including biochemical changes such as the accumula-
tion of csmalites and specific proteins involved instress tolerance. One of the proteins playing
an important role in the drought tolerance mechanism is dehydrin protein. This stud y aims to
determine the protein profile and dehydrin accumulation in seven Indonesian soybean vari-
eties: Tanggamus, Nanti, Seulawah, and Tidar (tolerant), Wilis and Burangrang (moderate},
and Detam-1 (sensitive to drought stress). The drought stress adjusted soil maoisture cantent
10 25% below field capacity and compared with plants grown under normal conditions.



318 I5. Mdxube lrvaimg by S doydopmes of deughs mree pkoocc o oybom

E][E]EE][E]LI“ J(me 1] [ “ll “‘I"l’[mllwl

FIG. 1 The profile of protein nolated from soybean’s leaves at 35days after planting, M, marker; TC, Tanggamus
control: TS, Tanggamus stress; NC, Nanti contral; NS, Nantl stress; SC, Seulywah control; $5, Seulrwah stress: TC,
Tidar control; TS, Tidar stress WC Wils control; WS, Wilks stress; BC, Burangrang control; BS, Burangrang stress;
DC, Detam-1 control. DS, Detam-1 stress. Arrous show fhe new type of protem.

The SD5-PAGE electrophoresis results that the presence of new proteins with maolecular
weights of 13 and 52kDa in the varieties of Tanggamus, Nanli, Seulawah, and Tidar
(Fig. 1). Western blotting analysis for dehydrin showed that the amount of protén in the
leaves of all varieties except Tanggamus decreased under drought stress conditions. The
quantity of dehydrin protein in the tolerant varieties was higher than the amount of protein
in medium varieties and was sensitive to drought (Arumingtyas and Savitri, 2013).

The research mutation in soybean aims to determine the effectiveness of chemical muta-
gens (EMS) and physical mutagens {(gamma rays) in the ind uction of genetic diversity in soy-
beans. Mutation detection with molecular markers to characterize the genetic diversity of
plants. This study uses four primers, the ISSR molecular marker. The primary PCR amplifi-
cation results of ISSR2, ISSR3, and UBCSSS showed 100% polymorphism. The mutation in-
duction treatment using EMS chemical showed a higher leve of polymorphism than a
gamma-ray treatment (Fig. ZA-D; Savitri, 2018).

Abiotic stress, espedally drought, significantly reduces plant productivity. Mutagenesis
uses as a method that has the potential to increase genetic variability in plants. The DREBI
gene is a subclass of the DREB gene, which is a transcription factor and serves as a critical
regulatory response of plants to drought stress.

This stud y aims to determine the expression of the DREBI gene mutatad by EMS mutagen.
The method used was RN A isolation using the RNeasy Plant Mini Kit (Qiagen). The expres-
sion of GmDREB-1 was analyzed using Real-Time PCR (Quantitative Real-time Polymerase
Chain Reaction or Q-PCR). The analysis showed that the mutation treatment with EMS using
aconcentration of 0.07% with an immersion time of 4.6 and 8h, as shown in the expression of
GmDREB-1, was higher than other treatments. This study proves that mutation ind uction
using EMS uses as an alternative strategy for plant breeding to obtain drought-resistant soy-
beans {Savitri and Resmisari, 2019).

The chemical ethyl methanesulfonate (EMS) mutagen induction uses on soybeans. The
mutation event results in the exchange of DNA bhases, which leads to genotypic and
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FIG. 2 (A) Amplification pattem of ESR primers AGSCT/ASSR1 for soybean. 8 EMS 1% with 4h mmersion; 9
EMS 1% with 6h immerson; 100 EMS 1% with §h mmason K-control, 1: 100Cy gamma rays; 2 200Cy gamma
ravs; & 300Gy gamma rays, (B} Amplificaton pattern of BSR pnmers CASC /ISSR2 for soybean. 8 EMS 1% with 4h
immersion; 9 EMS 1% with 6h immemion; 100 PMS 1% with 8h immeraon, K- control 1: 100Gy gamma rays; 2
200Cy gamma rays; X 30Cy gamma rays, (O Amplificaton patern of BSR prmers GT-AC /TSSRS far soybean
3: EMS 1% with 4h immersaon; @ EMS 1% with 6h mmersion; 102 EMS 1% wifh 8h immeraon, K ~control, 1
10Cy gam rays 2 W0Cy gamma rays 5 00Cy gamma rays, (D) Amplification pattern of BSR primers BDB
(CA)/UBCSSS for sovbean. 8 EMS 1% wath 4h mmmersion; 92 BMS 1% with 6himmersan; 10 EMS 1% withS him

)

merson, K-contml, 1: 100Cy gamma rays; 2 200Gy gamma rays; 3 30Cy samma rays

phenotypic changes. Breeding mutations uses to obtain improved varieties. The DREB2 gene
is a subclass of the DREB (dehydration-responsive element-binding protein) family of tran-
scription factar genes. It serves to respond to and regulate gene expression during drought
stress. The research about EMS mutagen aims to identify and characterize the GmDREB2
gene by various EMS mutation induction treatments. Mutation treatment is a combination
of EMS concentration (0.05%, 0.50%, and 1.00%) and immersion time (4, 6, and 8h).

The results showed that the GmDREB2 sequence in the 1.00% EMS treatment withan im-
mersion time of 8h showed the most significant changes, not only in the GmDREB2 gene se-
quence but also in the amino acid changes. The most significant change occurred in the M10
treatment, which had a 14-point mutation that changed the basic sequence. There are two
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types of mutations in this treatment: 11 missense mutations and three nonsense mutations
{Savitri and Fauziah, 2019). Mutation induction in soybean aims to develop high genetic di-
versity to develop breeding for superior varieties. Mutation induction can be done physically
using gamma rays and chemically using EMS (Ethyl Methane Sulfonate) mutagens.

Black soybeans have a higher flavanoid content than yellow soybeans. Seed and habitus of
planting black soybean are shownin Figs. 3 and 4. Flav onoids are phenolic compounds that
have the po(enhal to be used as antiondd ants. Improving the quality of black soybean seeds
can be done with mulation treatments that can increase flavonaoids, antioxidant activity, and
phenolic compounds. This study aims to determine the levels of flavonoids, anticedd ant ac-
tivity, and phenol of black soybean varieties Detam 3 using gamma rays treatment and Ethyl
Methanesulphonate (EMS) induction. Thed oses used in this study were 1000Gy gamma rays,
1% EMS, and a combination of gamma rays and EMS. Total phenolics was determined using
the folin<ciocalteu method, expressed as gallic acid equivalent (GAE) /g of extract. The flavo-
noid content was determined by the AK'l; method, which is quercetin equivalent (QE)/gr
extracl. Antioxidant aclivity was determined using Ferric Reducing Antioxidant Power
(FRAP), expressed as ascarbic acid equivalent (AAE)/gr extracl. Mulagen Ireatment

" o T 50 [TH

FIG. 4 Wabitus bladk sovbean vanety Debm 3 mutant gammaray 1000Cy dan/EMS 1% TOU2 «control {seed
soak i buffer phospat pl7 6h}, TIUS ~ control {without soalang ), T2US) - gamma rays 1000Cy, T« EMS 1%
soaldng 6h, T4U 12~ gamma rays 1000Cy + EMS 1%
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produdng the highest total flavonoids, phenals, and antioxidant activity was the 100Gy
gamma-ray treatment, namely, 185748mg QE extract/g, 645447 mg GAE extract/g, and
166752 mg AAE extract/g (Figs. 5 and 6). This utility for further research is to develop black
soybean varieties as a source of antioxidants.

Research to determine the effectiveness of chemical combinations (EMS) and physical mu-
tagens (gamma rays) in the ind uction of genetic diversity in black soybean varieties Detam 1
has been carried out. Mutation detection is carried out with molecular markers to characterize
the genetic diversity of a plant. The mutation induction method used in this research is EMS
treatment and gamma rays. This stud y used 5ISSR (Inter Simple Sequence Repeat) molecular
markers primers. The primers UBC 810, UBC 811, UBC 812, UBC 828, and K18 successfully
amplified and showed genetic diversity in black soybeans treated with a combination of
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FIG. 6 Antaddant activity {AAE QF/ g edstrak). TO ~ cantrol {seed soak mbuffer bsfat pH76), T1 —control fwith-
out soaling), T2~ gamnu rays 100Gy, T3« EMS 1% soaldng 6h, Td — gamma rays 1000 Cy +EMS 1%.
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FIG. 7 Dendrogram of mutant from gamma rays and EMS induction. KO and K1 ~control, Pl ~ gamma rays
iradistion, P2« EMS, P3 - gamma rays and EMS.

gamma-ray irradiation and EMS. The results showed that gamma-ray irradiation produced a
higher level of polymarphism than the cantrol and EMS treatment, so it was suitable for the
selected treatment candidates for further treatment (Savitri and Fauziah, 2020). The dendro-
gram result of mutation treatment in Fig 7.
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