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Abstract. The concept of monitoring the coefficient of variation has gained 

significant interest in quality control, particularly in situations where the mean 

and standard deviation of a process are not constant. This study modified the 

procedure of the previous double sampling chart for monitoring the coefficient of 

variation, developed by Ng et al. in 2018. Instead of using only information from 

the second sample, here, information from both samples is used. The probability 

properties of the out-of-control signal and run length of this chart are presented. 

To evaluate the chart’s performance, the optimal design and a comparison with 

the previous double sampling control chart using average run-length criteria are 

described. It was found that the modified double sampling chart has better 

performance and is more efficient compared to the previous chart, especially 

when the total sample size is smaller. As a study case, the application of this 

chart is illustrated using real data from a molding process. This confirmed that 

the modified double sampling chart improved performance in detecting out-of-

control signals. Thus, the modified chart is recommended to be applied in 

industry. 

Keywords: coefficient of variation; control chart; double sampling; run length; 

molding process. 

1 Introduction 

The productivity quality in manufacturing or service companies should 

continuously be assessed and improved. The control chart has an important role 

in improving and maintaining the quality of the process. It is commonly used to 

examine and decide if the process state is statistically controlled or not. A 

process is considered to be in-control (IC), under normality distribution, as long 

as it has a constant mean and standard deviation. When there is a change in the 
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process mean or standard deviation, the control chart triggers an alarm, 

indicating that the process is considered out-of-control (OC). 

There are phenomena, for instance in chemical and biological assays, in which 

the mean and standard deviation vary over time, but those are naturally 

occurring IC processes. Although the respective mean and standard deviation 

control charts show the OC process, it is possible to consider the process as IC 

when its quotient is steady around a certain value [1]. This quotient is between 

the standard deviation σ relative to the mean µ, and is called the coefficient of 

variation (CV), γ. Process monitoring using CV is applicable in mechanical 

engineering [3], manufacturing [2], and materials engineering [4-6].  

Kang et al. [7] introduced the first control chart for monitoring the coefficient of 

variation (CV), known as the SH-CV chart, which follows the Shewhart-type 

chart. Nevertheless, employing this chart to identify small to moderate shifts in 

CV is not advisable due to its limited sensitivity. Some further investigations 

have been conducted to strengthen the sensitivity of the SH-CV chart. The two-

sided EWMA-CV chart was developed by [8], while the one-sided EWMA-CV 

chart was elaborated in [9]. Both charts demonstrated a performance superior to 

the SH-CV chart in detecting small to moderate shifts in the coefficient of 

variation. 

Furthermore, some researchers have proposed adaptive-type control chart 

implementation in order to improve OC detection, especially through variable 

sampling interval (VSI) and variable sample size (VSS) schemes. VSI and VSS 

methods of the Shewhart type for CV monitoring were proposed by Castagliola 

et al. in 2013 and 2015 [4,10], called VSI-CV and VSS-CV charts, respectively. 

Both charts have better performance compared to the SH-CV chart. Meanwhile 

the VSS-CV and VSI-CV charts were enhanced for short production runs 

([11,12]). Further, a combination of VSS and VSI in observing the process can 

be executed by using the CV, which is called a VSSI-CV chart [13]. 

The VSI and VSS ideas were used in the Double Sampling (DS) chart. When an 

OC warning or signal occurs, the second sample is taken in the shortest time 

interval as an addition to the first sample. Croasdale [14] proposed the first DS 

chart for mean process monitoring (denoted as CDS-�̅� chart). The information 

from both samples is evaluated independently by CDS-�̅� chart. A modified 

CDS-�̅� chart is executed by utilizing information from both samples in the 

second stage and is denoted as DS-�̅� [15]. The DS procedure offers better 

statistical efficiency without increased sampling compared to the Shewhart 

chart. Alternatively, the procedure can reduce sampling without losing 

statistical efficiency. Irianto and Shinozaki [16] explored the effectiveness of 
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both DS procedures and found that the DS chart proposed by Daudin 

outperformed the Croasdale chart regarding its ability to detect shifts.  

Meanwhile, in terms of monitoring variability using the DS scheme, several 

authors, such as He & Grigoryan [17], developed the properties of the DS-s 

chart. Costa [18] proposed a DS scheme for improved the performance of the R 

chart and Lee & Khoo [19] investigated an economic-statistical design of the 

DS-s chart. The DS scheme for monitoring CV was proposed earlier by Ng et 

al. [20]. This chart outperforms the SH-CV chart in detecting small to moderate 

shifts in the CV. However, this chart procedure revealed that the condition of 

the second-stage process is based only on information from the second sample. 

On the other hand, Daudin [15] argued that more economies could be achieved 

by designing a scheme that involves information from the first sample in the 

second stage. 

Therefore, the objectives of this study were: (a) to modify the procedure of the 

previous DS-CV chart, referred to as MDS-CV chart, by incorporating 

information from both samples when making decisions for the second stage; (b) 

to evaluate the performance of the MDS-CV chart and compare it with the DS-

CV chart; and (c) to apply this chart to real data from a molding process as a 

case study. It should be noted that, alongside the preparation for this paper, 

similar research has been done that discussed another DS-CV chart that also 

considers information from both samples in making decisions for the second-

stage process. However, that study used combined CV statistics as the weighted 

average of the first- and second-stage sample CVs. Meanwhile, the present 

paper used combined CV statistics as the total sample CV, calculated based on 

the ratio between the combined standard deviation and the combined mean of 

the first- and second-stage samples. 

The rest of this paper is arranged as follows. In Section 2, the distribution of the 

sample CV is reviewed, including some notations used in this paper. The review 

of the DS-CV chart and the design of the modified chart and its statistical 

properties are explained in Section 3. An analysis of the numerical and a 

performance comparison with the DS-CV control chart is given in Section 4. An 

application example as a case study from a molding process is discussed in 

Section 5. In the last section, the conclusions are drawn. 

2 Distribution of the Combined Sample CV 

Suppose 𝑋 is a random variable and has positive values. It is taken from a 

population whose mean and standard deviation respectively are 𝜇 and 𝜎, 𝜎 <
∞. Thus, the CV of 𝑋, notated by , is expressed as: 
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 =
𝜎

𝜇
 (1) 

Assume that 𝑋1, 𝑋2, … , 𝑋𝑛 are random samples with size n and follows a normal 

distribution 𝑁(𝜇, 𝜎2). Let the sample mean (�̅�) and standard deviation (𝑆) of 

samples be calculated as follows, respectively: 

�̅� =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

;   𝑆 = (
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
)

1/2

 (2) 

The sample CV, symbolized by 𝐺, is defined as: 

𝐺 =
𝑆

�̅�
 (3) 

For 0 <  ≤ 0.5, the non-central t distribution can accurately approximate the 

cumulative distribution function (CDF) of 𝐺 [21]. The CDF of 𝐺 approximation 

is: 

𝐹𝐺(𝑥|𝑛, ) = 1 − 𝐹𝑇(√𝑛 𝑥⁄ |𝑛 − 1, √𝑛 ⁄ ), 𝑥 > 0 (4) 

where 𝐹𝑇(. ) is the CDF of the non-central t distribution with degree of freedom 

is 𝑛 − 1 and the parameter of non-centrality is √𝑛 ⁄ . The inverse CDF of G, 

𝐹𝐺
−1(𝛼|𝑛, 𝛾) is obtained by inverting 𝐹𝐺(𝑥|𝑛, ) as follows: 

𝐹𝐺
−1(𝛼|𝑛, 𝛾) =

√𝑛

𝐹𝑇
−1(1 − 𝛼|𝑛 − 1, √𝑛 ⁄ )

 (5) 

where 𝐹𝑇
−1(. ) is the inverse CDF of the noncentral t distribution. 

Furthermore, because this study modified the DS chart for monitoring the CV, 

based on the concept that if the statistic from the first sample fall into the 

warning area, it needs to be confirmed using information from the second 

sample. This is carried out by calculating the combined statistics from the first 

and the second sample in order to make a decision on the process state. Since 

the statistic to be monitored is CV, then the properties of the combined sample 

CV in the second stage are needed. 

Suppose that 𝑿𝟏 = {𝑋11, 𝑋12, … , 𝑋1𝑛1
} and 𝑿𝟐 = {𝑋11, 𝑋12, … , 𝑋1𝑛2

} are 

random sample collections from a normal 𝑁(𝜇, 𝜎2) distribution of size 𝑛1 and 

𝑛2, respectively. Let �̅�𝑘 and 𝑆𝑘 be the kth sample mean and standard deviation 

of 𝑿𝒌, with 𝑘 = 1,2, calculated by Eq. (2). Let the combined sample mean (�̅�𝑐) 

and sample standard deviation (𝑆𝑐) be defined as follows, respectively: 
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�̅�𝑐 =
𝑛1. �̅�1 + 𝑛2. �̅�2

𝑛1 + 𝑛2 
  and  𝑆𝑐 = (

(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2

𝑛1 + 𝑛2 − 2
)

1/2 

, (6) 

then the combined sample CV is defined as [22]: 

𝐺𝑐 =
𝑆𝑐

�̅�𝑐

, (7) 

Further, to investigate the distribution of 𝐺𝑐, first we propose the following 

lemma. 

Lemma. The distribution of 𝑇 = (√𝑛1 + 𝑛2)�̅�𝑐/𝑆𝑐 follows a non-central t 

distribution with degree of freedom 𝜈 = (𝑛1 + 𝑛2 − 2) and non-centrality 

parameter 𝛿 = √𝑛1 + 𝑛2. 𝜇/𝜎. 

Proof: 

Consider that �̅�𝑘  ~𝑁(𝜇, 𝜎2/𝑛𝑘) and  
(𝑛𝑘−1)𝑆𝑘

2

 𝜎2  ~ 𝜒(𝑛𝑘−1)
2 , for k = 1,2. Then, 

�̅�𝑐  ~𝑁(𝜇, 𝜎2/(𝑛1 + 𝑛2) and 
𝑛1+𝑛2−2)𝑆𝑘

2

 𝜎2  ~ 𝜒(𝑛1+𝑛2−2)
2 . 

Notice that �̅�𝑘 is independent of 𝑆𝑘
2  for k = 1,2. Since �̅�𝑐 is a function of 

{�̅�1, �̅�2} and 𝑆𝑐
2 is a function of {𝑆1

2, 𝑆2
2}, �̅�𝑐 is independent of 𝑆𝑐

2. Note that 

√𝑛1 + 𝑛2�̅�𝑝

𝑆𝑝
=

√𝑛1 + 𝑛2(�̅�𝑝 − 𝜇) + √𝑛1 + 𝑛2𝜇

√𝑆𝑝
2

 

=

(√𝑛1 + 𝑛2)(�̅�𝑝 − 𝜇)
𝜎 +

(√𝑛1 + 𝑛2)𝜇
𝜎

√
(𝑛1 + 𝑛2 − 2)𝑆𝑝

2

(𝑛1 + 𝑛2 − 2)𝜎2

 

=
𝑍 + (√𝑛1 + 𝑛2)𝜇/𝜎

√𝑊/(𝑛1 + 𝑛2 − 2)
=

𝑍 + 𝛿

√𝑊/𝜈
= 𝑇 

Since 𝑍 ~ 𝑁(0,1) and 𝑊 ~ 𝜒𝑛1+𝑛2−2
2 , 𝑇 follows a non-central t distribution 

with degree of freedom 𝜈 = (𝑛1 + 𝑛2 − 2) and non-centrality parameter 𝛿 =
(√𝑛1 + 𝑛2)𝜇/𝜎.        

Based on the lemma above, the CDF of 𝐺𝑐 is determined as stated in the 

following corollary: 

Corollary. The CDF of 𝐺𝑐 is given as follows: 
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𝐹𝐺𝑐
(𝑥|𝑛1 + 𝑛2, 𝛾) = 1 − 𝐹𝑡 (√𝑛1 + 𝑛2

𝑥 |𝑛1 + 𝑛2 − 2, √𝑛1 + 𝑛2
𝛾

) (8) 

where 𝐹𝑡(. |𝜈, 𝛿) is a non-central t distribution with parameter of non-centrality 

𝛿 = (√𝑛1 + 𝑛2)/𝛾 and degree of freedom 𝜈 = (𝑛1 + 𝑛2 − 2). 

Proof: 

Since 𝐺𝑐 =
𝑆𝑐

�̅�𝑐
 it means that:  

𝐹𝐺𝑐
(𝑥|𝑛1 + 𝑛2, 𝛾) = 𝑃(𝐺𝑐 ≤ 𝑥) = 𝑃 (

√𝑛1 + 𝑛2

𝐺𝑐
≥

√𝑛1 + 𝑛2

𝑥
) 

= 𝑃 (
√𝑛1 + 𝑛2. �̅�𝑐

𝑆𝑐
≥

√𝑛1 + 𝑛2

𝑥
) 

= 𝑃 (𝑇 ≥
√𝑛1 + 𝑛2

𝑥
) = 1 − 𝑃 (𝑇 ≤

√𝑛1 + 𝑛2

𝑥
). 

Using Lemma 1, the CDF of 𝐺𝑐 is obtained as follows: 

𝐹𝐺𝑐
(𝑥|𝑛1 + 𝑛2, 𝛾) = 1 − 𝐹𝑡 (√𝑛1 + 𝑛2

𝑥 |𝑛1 + 𝑛2 − 2, √𝑛1 + 𝑛2
𝛾

) 

3 Modified Double Sampling Coefficient of Variation Chart 

Suppose that 𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑛𝑡 are random samples of size n whose distributions 

are normal 𝑁(𝜇𝑡 , 𝜎𝑡
2) and 𝜇𝑡 and 𝜎𝑡

2 respectively are the mean and variance of 

the population at number of observations 𝑡 = 1, 2, …. Define the CV when the 

IC process is 
𝑡

= 𝜎𝑡/𝜇𝑡 = 
0
. Thus, the CV, 

𝑡
= 𝜎𝑡/𝜇𝑡 must be identical with 

fixed IC value 
0
 for all number of observations, 𝑡, although the values of 𝜇𝑡 

and 𝜎𝑡 may be different between one subgroup and another. 

3.1 A Brief Review of DS-CV Chart 

Here, the DS-CV chart proposed by Ng et al. [20] is briefly reviewed. A 

schematic view of the DS-CV chart is shown in Figure 1, where the lower/upper 

warning limits (𝐿𝑊𝐿/𝑈𝑊𝐿) of this chart in Stage 1 are defined as: 

𝐿𝑊𝐿 = 𝜇0(𝐺) − 𝑊𝜎0(𝐺);  𝑈𝑊𝐿 = 𝜇0(𝐺) + 𝑊𝜎0(𝐺) 

and the lower/upper control limits (𝐿𝐶𝐿𝑘/𝑈𝐶𝐿𝑘) in Stage 𝑘, 𝑘 =  1,2, are 

defined as: 

𝐿𝐶𝐿𝑘 = 𝜇0(𝐺) − 𝐿𝑘𝜎0(𝐺); 𝑈𝐶𝐿𝑘 = 𝜇0(𝐺) + 𝐿𝑘𝜎0(𝐺) 

where 𝑊 > 0  is the warning limit and 𝐿1 > 𝑊 is the control limit for the 

parameters of the first stage, and 𝐿2 > 0 is the control limit for the parameters 

of the second stage. 
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For the sample CV, 𝐺, the IC-mean and IC-standard deviation are represented 

by 𝜇0(𝐺) and 𝜎0(𝐺) respectively. The formulas 𝜇0(𝐺) and 𝜎0(𝐺)  can be found 

from the work of Castagliola [4]. Let  

𝐼1 = [𝐿𝑊𝐿, 𝑈𝑊𝐿],  𝐼2 = [𝐿𝐶𝐿1, 𝐿𝑊𝐿), 𝐼3 = (𝑈𝑊𝐿, 𝑈𝐶𝐿1], 

and 𝐼4 = (𝑈𝐶𝐿1, +∞) ∪ (−∞, 𝐿𝐶𝐿1). 

 

Figure 1 Schematic view of the DS-CV chart. An out-of-control signal is 

detected under three conditions, namely if (i) the first-stage sample falls at 𝐼4, (ii) 

the first-stage sample falls at 𝐼2 and the second-stage sample falls above 𝑈𝐶𝐿2, 

or (iii) the first-stage sample falls at 𝐼3, and the second-stage samples fall below 

𝐿𝐶𝐿2. 

Based on Figure 1, the DS-CV chart procedure as follows [17]: 

Step 1. Observe the 1st sample with size 𝑛1 at sample number t, i.e., 𝑋1𝑖𝑡  , 𝑖 =
1,2, … , 𝑛1 from a normally distributed population with mean 𝜇𝑡 and 

standard deviation 𝜎𝑡. 

Step 2. Determine the 1st sample CV, 𝐺1𝑡 = 𝑆1𝑡/�̅�1𝑡, where �̅�1𝑡 and 𝑆1𝑡 are the 

1st sample mean and the standard deviation, respectively. 

Step 3. If 𝐺1𝑡 ∈ 𝐼1, then the IC process is declared and returns to Step 1 for time 

(𝑡 + 1). 

Step 4. If 𝐺1𝑡 ∈ 𝐼4, then continue to Step 7. 

Step 5. If 𝐺1𝑡 ∈ 𝐼2 ∪ 𝐼3, observe the 2nd sample with size 𝑛2, i.e., 𝑋2𝑖𝑡  , 𝑖 =
1,2, … , 𝑛2 from the 1st sample population. Do the evaluation to the 2nd 

sample CV, 𝐺2𝑡 = 𝑆2𝑡/�̅�2𝑡, where �̅�2𝑡 and 𝑆2𝑡 are the 2nd sample mean 

and standard deviation, respectively. 

Step 6.  If (𝐺1𝑡 ∈ 𝐼2 and 𝐺2𝑡 ≥ 𝐿𝐶𝐿2) or (𝐺1𝑡 ∈ 𝐼3 and 𝐺2𝑡 ≤ 𝑈𝐶𝐿2), the IC 

process is declared, then returns to Step 1 for sample number (𝑡 + 1). 

Otherwise, continue to Step 7. 

Step 7. The OC signal is detected by the DS-CV chart at tth sample. Immediate 

actions are required to distinguish the assignable causes(s). 
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Suppose that an IC process given a process CV, 𝛾, that takes into account 

information from both samples using the DS scheme, has probability 𝑃𝑎(𝛾), 

which is defined as: 

𝑃𝑎(𝛾) = 𝑃𝑎1(𝛾) + 𝑃𝑎2(𝛾), (9) 

where 𝑃𝑎1(𝛾) and 𝑃𝑎2(𝛾) are the probabilities of the declared IC process in the 

first and the second stage, given a process CV, respectively. According to the 

above procedure, Ng et al. [18] derived the probabilities formula as:  

𝑃𝑎1(𝛾) = 𝑃𝑟(𝐿𝑊𝐿 ≤ 𝐺1𝑡 ≤ 𝑈𝑊𝐿) = 𝐹𝐺(𝑈𝑊𝐿|𝑛1, 𝛾) − 𝐹𝐺(𝐿𝑊𝐿|𝑛1, 𝛾) 

𝑃𝑎2(𝛾) = 𝑃𝑟(𝐿𝐶𝐿1 ≤ 𝐺1𝑡 ≤ 𝐿𝑊𝐿  and  𝐺2𝑡 ≥ 𝐿𝐶𝐿2) 

+𝑃𝑟(𝑈𝑊𝐿 ≤ 𝐺1𝑡 ≤ 𝑈𝐶𝐿1  and  𝐺2𝑡 ≤ 𝑈𝐶𝐿2) 

= {[𝐹𝐺(𝐿𝑊𝐿|𝑛1, 𝛾) − 𝐹𝐺(𝐿𝐶𝐿1|𝑛1, 𝛾)] × [1 − 𝐹𝐺(𝐿𝐶𝐿2|𝑛2, 𝛾)]} + 

{[𝐹𝐺(𝑈𝐶𝐿1|𝑛1, 𝛾) − 𝐹𝐺(𝑈𝑊𝐿|𝑛1, 𝛾)] × 𝐹𝐺(𝐿𝐶𝐿2|𝑛2, 𝛾)}  

where 𝐹𝐺(𝑥|𝑛, 𝛾) is expressed in Eq. (4). 

 

Figure 2 Schematic view of the MDS-CV chart. An out-of-control signal is 

detected under two conditions, i.e., if (i) the first-stage sample falls at 𝐼3, (ii) the 

first-stage sample falls at 𝐼2 and the second-stage sample falls above 𝑈𝐶𝐿2 or 

below 𝐿𝐶𝐿2. 

Based on the DS-CV chart procedure, it can be seen that the determination of 

the process conditions in Stage 2 is only judged by the CV of the second 

sample. In contrast, the DS idea should use the information combination from 

the first and second samples for examining the process condition in Stage 2 

([15,17]). Thus, a modification of the DS-CV chart is suggested. This 

modification involves information from the first and the second sample in order 

to obtain the conclusion for the second stage. 
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3.2 Proposed Chart  

In this section, the modified DS chart for monitoring the CV, denoted by MDS-

CV chart, is described. Redefine the intervals of Figure 1 to obtain the modified 

chart, where 𝐼1 = (𝐿𝐶𝐿1, 𝑈𝐶𝐿1] 𝐼2 = [𝐿𝐶𝐿1, 𝐿𝑊𝐿) ∪ (𝑈𝑊𝐿, 𝑈𝐶𝐿1], 𝐼3 =
(−∞, 𝐿𝐶𝐿1) ∪ (𝑈𝐶𝐿1, +∞), and 𝐼4 = (𝐿𝐶𝐿2, 𝑈𝐶𝐿2], which is illustrated in 

Figure 2. The operational procedure for this chart is:  

Run the DS-CV chart procedure, by modifying Step 4 to 6, as follows: 

Step 4. If 𝐺1𝑡 ∈ 𝐼3, then continue to Step 7. 

Step 5a. If 𝐺1𝑡 ∈ 𝐼2, observe the 2nd sample of size 𝑛2, 𝑋2𝑖𝑡  , 𝑖 = 1,2, … , 𝑛2 

from the 1st sample population. Calculate �̅�2𝑡 and 𝑆2𝑡 as the 2nd sample 

mean and standard deviation, respectively. 

Step 5b. Evaluate the combined sample CV, 𝐺𝑐𝑡 = 𝑆𝑐𝑡/�̅�𝑐𝑡, where �̅�𝑐𝑡 and 𝑆𝑐𝑡 

are the combined sample mean and standard deviation, which are 

computed using Eq. (7). 

Step 6. If 𝐺1𝑡 ∈ 𝐼2 and 𝐺c𝑡 ∈ 𝐼4, the IC process is declared, and return to Step 

1 for sample number (𝑡 + 1). Else, continue to Step 7. 

Furthermore, the properties of the MDS-CV chart were investigated. Let 𝑃𝑎(𝛾) 

in Eq. (9) for our chart is denoted as 𝑃𝑎
∗(𝛾), then this probability is defined as: 

𝑃𝑎
∗(𝛾) = 𝑃𝑎1

∗(𝛾) + 𝑃𝑎2
∗(𝛾). (10) 

According to this chart procedure, the probabilities 𝑃𝑎1
∗(𝛾) and 𝑃𝑎2

∗(𝛾) are 

derived as follows: 

𝑃𝑎1
∗(𝛾) = 𝑃𝑎1

(𝛾) 

𝑃𝑎2
∗(𝛾) = 𝑃𝑟{(𝐿𝐶𝐿1 ≤ 𝐺1𝑡 ≤ 𝐿𝑊𝐿  or 𝑈𝑊𝐿 ≤ 𝐺1𝑡 ≤ 𝑈𝐶𝐿1) and (𝐿𝐶𝐿2

≤ 𝐺𝑐𝑡 ≤ 𝑈𝐶𝐿2)} 

= 𝑃2(𝛾). [𝐹𝐺𝑐
(𝑈𝐶𝐿2|𝑛1 + 𝑛2, 𝛾) − 𝐹𝐺𝑐

(𝐿𝐶𝐿2|𝑛1 + 𝑛2, 𝛾)] 

and 

𝑃2(𝛾) = [𝐹𝐺(𝑈𝐶𝐿1|𝑛1, 𝛾) − 𝐹𝐺(𝑈𝑊𝐿|𝑛1, 𝛾)] + 
[𝐹𝐺(𝐿𝑊𝐿|𝑛1, 𝛾) − 𝐹𝐺(𝐿𝐶𝐿1|𝑛1, 𝛾)] 

(11) 

is the probability that the 1st sample CV falls inside the warning area. 

𝐹𝐺(. |𝑛1, 𝛾) is calculated using Eq. (4), while 𝐹𝐺𝑐
(. |𝑛1 + 𝑛2, 𝛾) is calculated 

using Eq. (8).  

Furthermore, to evaluate this chart, the average sample size (𝐴𝑆𝑆) and the 

average run length (𝐴𝑅𝐿) are implemented. Based on the DS scheme, ARL is 

defined as: 

𝐴𝑅𝐿 =
1

1 − 𝑃𝑎
∗(𝛾)

 (12) 
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while ASS at each observation is calculated as: 

𝐴𝑆𝑆 = 𝑛1 + 𝑛2𝑃2(𝛾) (13) 

where 𝑃𝑎
∗(𝛾) and 𝑃2(𝛾) are calculated using Eq. (10) and Eq. (11). 

If the CV of the IC-process is represented by 𝛾 = 𝛾0, then the CV of the OC-

process arises while 𝛾 = 𝛾1, i.e., 𝛾1 = 𝜏𝛾0 for a specific shift 𝜏 ≠ 1, where τ is 

the CV shift size. The upward and downward shifts in CV are denoted as 𝜏 > 1 

and 𝜏 ∈ (0,1), respectively. The IC (OC) ARL is denoted as 𝐴𝑅𝐿0 (𝐴𝑅𝐿1), 

while the IC (OC) ASS is denoted as 𝐴𝑆𝑆0 (𝐴𝑆𝑆1). Using Eq. (12) and Eq. (13), 

the warning and control limits of this chart are determined such that:  

𝐴𝑅𝐿0 = 𝐴𝑅𝐿(𝜏 = 1) =
1

1 − 𝑃𝑎
∗(𝛾0)

=
1

𝛼0
 

where 𝛼0 is the probability of a false alarm (error type-I) and 

𝐴𝑆𝑆0 = 𝐴𝑆𝑆(𝜏 = 1) = 𝑛1 + 𝑛2𝑃2(𝛾0) 

4 Performance Evaluation and Comparison 

4.1 Performance Evaluation of the MDS-CV Chart 

The performance of the MDS-CV chart is assessed based on the ARL criteria. 

The optimization model is defined as follows: 

min
 𝑊,𝐿1,𝐿2

𝐴𝑅𝐿1 = min
 𝑊,𝐿1,𝐿2

1

1 − 𝑃𝑎
∗(𝛾1)

 (14) 

Subject to:  

(a) 𝐴𝑆𝑆0 = 𝑛0, where 𝑛0 is the desired in-control ASS 

(b) 𝐴𝑅𝐿0 = ℓ, where ℓ is the desired in-control ARL 

(c) 2 ≤ 𝑛1 < 𝑛0 < 𝑛1 + 𝑛2 ≤ 𝑛𝑚𝑎𝑥 

The steps of finding the optimal parameter (𝑊, 𝐿1, 𝐿2) of MDS-CV charts are: 

1. Choose the desired 𝛾0, 𝑛0, ℓ, and 𝜏 values. 

2. For the IC condition (𝜏 = 1), choose 𝑛1 and 𝑛2 variations that satisfy 

constraint (c); all possible values of 𝑊 and 𝐿1 are obtained from constraint 

(a). 

3. For all fixed values of 𝑊 and 𝐿1 found in Step 2, all values of 𝐿2 can be 

obtained from constraint (b). 

4. For any out-of-control condition (𝜏 ≠ 1), find the optimal parameter that 

minimizes Eq. (14) from all possible combinations of triple parameters 

found in Steps 2 and 3. 



66 The Modified Double Sampling Coefficient 

 

 

Figure 3 (a) Performance of the MDS-CV chart and (b) decrease of 𝐴𝑅𝐿1, 

based on 𝐴𝑅𝐿1 value, when 𝛾0 = 0.1, 𝐴𝑅𝐿0 = 370.4, 𝐴𝑆𝑆0 = 5, and (𝑛1, 𝑛2) =
(4,2) for 𝜏 = [1.1,9.0]. The 𝐴𝑅𝐿1 value decreased as the 𝜏 value increased, 

meaning that when the shift increased, the MDS-CV chart will be faster in 

detecting out-of-control signals. In the range 1 < 𝜏 ≤ 2, the decline is almost 97 

times faster than the decline in the range 2 ≤ 𝜏 < 3.1. 

Based on the optimization model above, the performance of MDS-CV chart can 

be evaluated in two ways. First, the effect of 𝜏 when 𝑛1 and 𝑛2 are fixed. Here 

the performance of MDS-CV chart was investigated for 𝛾0 = 0.1, 𝐴𝑅𝐿0 =



 Fachrur Rozi, et al. 67 

 

370.4, 𝐴𝑆𝑆0 = 5, and (𝑛1, 𝑛2) = (4,2), for 𝜏 = [1.1,9.0], as provided in 

Figure 3.  

Figure 3(a) shows that the 𝐴𝑅𝐿1 value decreased as the value of τ increased, 

with a swift decline in the range 1 < 𝜏 ≤ 2, i.e., almost 97 times faster than the 

decrease in the range 2 ≤ 𝜏 < 3.1, and gets slower when 𝜏 ≥ 3.2, until it 

converges to a value of 1. More specifically, Figure 3(b) shows a decrease of 

𝐴𝑅𝐿1 less than 0.1 when 𝜏 > 2.3, and less than 0.01 when 𝜏 > 3.5. This means 

that when the shift size of the CV increases, the MDS-CV chart will exhibit 

faster detection of such shifts. 

 

Figure 4 Performance of the MDS-CV chart based on the 𝐴𝑅𝐿1 value, when 

𝛾0 = 0.1, 𝐴𝑅𝐿0 = 370.4, 𝐴𝑆𝑆0 = 5, for 𝑛1 = {3,4} and variation of 𝑛𝑡𝑜𝑡 = 𝑛1 +
𝑛2 = {6,7, … ,25} with 𝜏 = 1.1 (left) and 𝜏 = 1.2 (right). 

The second way, investigate the effect of 𝑛1 and 𝑛2 when 𝜏 is fixed. The 

performance of MDS-CV chart when 𝛾0 = 0.1, 𝐴𝑅𝐿0 = 370.4, 𝐴𝑆𝑆0 = 5, and 

𝜏 = {1.1,1.2}, for 𝑛1 = {3,4} and variation of 𝑛𝑡𝑜𝑡 = 𝑛1 + 𝑛2 =
{6,7, … ,25} can be seen in Figure 4. 

Based on Figure 4, when 𝜏 is fixed, the 𝐴𝑅𝐿1 value decreased as 𝑛𝑡𝑜𝑡 increased, 

either 𝑛1 = 3 or 𝑛1 = 4. This means that when the sample size is increased, the 

sensitivity of the MDS-CV chart improves in detecting out-of-control signals. 

Moreover, generally, the value of 𝐴𝑅𝐿1 for 𝑛1 = 4 is smaller than the value of 

𝐴𝑅𝐿1 for 𝑛1 = 3, but when 𝜏 = 1.1 and 𝑛𝑡𝑜𝑡 ≥ 23, the 𝐴𝑅𝐿1 value reserved for 

𝑛1 = 3 is smaller. This indicates that the selection of the first sample size has an 

influence on the performance of the chart. 
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4.2 Comparison with the DS-CV Chart 

A comparison of our modified chart with the DS-CV chart was done based on 

𝐴𝑅𝐿1 terms. A control chart is deemed superior to its competitors if it possesses 

a smaller 𝐴𝑅𝐿1 value when the 𝐴𝑅𝐿0, 𝐴𝑆𝑆0, and 𝜏 values are fixed. In this 

paper, the comparisons discussed are limited to values 𝛾0 = 0.1, 𝐴𝑅𝐿0 =
370.4, 𝐴𝑆𝑆0 = 5, and 𝜏 = {1.1,1.2}, for 𝑛1 = {3,4} and variation of 𝑛𝑡𝑜𝑡 =
𝑛1 + 𝑛2 = {6,7, … ,25}. The 𝐴𝑅𝐿1 comparison of both charts can be seen in 

Figure 5. 

 

 

Figure 5 Performance comparison between the MDS-CV and DS-CV charts 

based on 𝐴𝑅𝐿1 when 𝛾0 = 0.1, 𝐴𝑅𝐿0 = 370.4, and 𝐴𝑆𝑆0 = 5, for (a). 𝜏 = 1.1, 

𝑛1 = 3; (b). 𝜏 = 1.1, 𝑛1 = 4; (c). 𝜏 = 1.2, 𝑛1 = 3; and (d). 𝜏 = 1.2, 𝑛1 = 4. 

Inside the charts are different values of 𝐴𝑅𝐿1, where Diff. of 𝐴𝑅𝐿1 = 𝐴𝑅𝐿1(DS-CV) 

– 𝐴𝑅𝐿1(MDS-CV).  

Figure 5 shows that for 𝜏 = 1.1 and 1.2, the 𝐴𝑅𝐿1 value of the MDS-CV chart 

(𝐴𝑅𝐿1−𝑀𝐷𝑆) is smaller than the 𝐴𝑅𝐿1 value of the DS-CV chart (𝐴𝑅𝐿1−𝐷𝑆). 

However, with increasing size of 𝑛𝑡𝑜𝑡, the difference between 𝐴𝑅𝐿1−𝑀𝐷𝑆 and 

𝐴𝑅𝐿1−𝐷𝑆 is getting smaller, and for a certain 𝑛𝑡𝑜𝑡, the 𝐴𝑅𝐿1−𝐷𝑆 reverses to 
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smaller than 𝐴𝑅𝐿1−𝑀𝐷𝑆. For instance, for 𝜏 = 1.1 𝑛1 = 3, 𝑛𝑡𝑜𝑡 < 22, 

𝐴𝑅𝐿1−𝑀𝐷𝑆 is smaller than 𝐴𝑅𝐿1−𝐷𝑆, but since 𝑛𝑡𝑜𝑡 ≥ 22, 𝐴𝑅𝐿1−𝐷𝑆 is smaller 

than 𝐴𝑅𝐿1−𝑀𝐷𝑆. This means that the performance of the MDS-CV chart 

surpasses that of the DS-CV chart, especially when the total number of samples 

𝑛𝑡𝑜𝑡 ≤ 15. However, for a larger 𝑛𝑡𝑜𝑡, the MDS-CV chart’s performance was 

almost equal to that of the DS-CV chart and even the DS-CV’s performance 

was better than that of the MDS-CV chart. 

5 Application Illustration: A Case Study 

This section presents a practical demonstration of the DS-CV chart by applying 

it to a real industrial company. The case study focused on evaluating the quality 

of the steel molding process at heavy equipment companies located in DKI 

Jakarta, Indonesia. The quality characteristics of concern were the result of 

measuring the chemical composition of the type of material (consisting of 

carbon, silicon, manganese, phosphor, nickel, chrome, and others) used for steel 

molding. At each time of inspection (observation), the chemical composition 

was measured on the same type of material. The type of material can change at 

every inspection depending on the type of material scheduled to be produced. 

Therefore, in the IC process state, the mean chemical composition can change 

from one observation to another. 

In this study, the chemical composition to be processed is carbon (C) in units of 

percentage by weight, because this substance is a key factor in the quality of 

steel molding, which affects the level of hardness and the tensile strength. The 

data obtained were secondary data from manual check sheet records of monthly 

chemical composition measurements for three types of materials, namely type 

2H, type 1H, and type 3E, from January 2017 to December 2018. In terms of 

carbon composition, the materials had the following specifications: type 2H 

(0.40-0.47), type 1H (0.28-0.35), and type 3E (0.27-0.30). The interest in this 

case study was to monitor the quality of the steel molding process based on the 

variability of the carbon composition.  

In order to apply the proposed chart in controlling the variability of the carbon 

composition, some assumptions had to be met. Those were: (1) the sample for 

each observation is normally distributed; (2) the samples between observations 

are independent of each other; and (3) the mean and standard deviation between 

observations can change but have a proportional relationship against the CV. 

Therefore, in this case, more than one type of material must be involved to 

fulfill the third assumption. The randomness of the material type order, which is 

the sample in this study, is unnecessary. This is because the material type order 

depends on the number of requests for heavy equipment products that require 
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steel molds from each type of material. The analysis of randomness is not 

discussed in this study and is a problem limitation. 

Table 1 Statistics from the Phase I data set (carbon composition of the material 

in 2017), consisting of 26 observations (unit sample is per two weeks) and three 

types of material (2H, 1H*, and 3E**) with sample size 𝑛0 = 5. The data set was 

used to estimate the in-control CV process, 
0
.  

Obs. (�̅�  ,  𝑆) 𝐺𝑖  Obs. (�̅� ,  𝑆) 𝐺𝑖 

1 (0.430 , 0.0100) 0.0233  14* (0.328 , 0.0084) 0.0255 

2 (0.428 , 0.0192) 0.0449  15* (0.450 , 0.0122) 0.0272 

3 (0.438 , 0.0130) 0.0298  16* (0.335 , 0.0112) 0.0334 

4* (0.332 , 0.0084) 0.0252  17 (0.428 , 0.0110) 0.0256 

5* (0.314 , 0.0114) 0.0363  18* (0.330 , 0.0158) 0.0479 

6 (0.436 ,  0.0089) 0.0205  19** (0.286 , 0.0055) 0.0192 

7 (0.434 , 0.0207) 0.0478  20** (0.289 , 0.0042) 0.0145 

8 (0.448 , 0.0130) 0.0291  21** (0.291 ,  0.0074) 0.0255 

9 (0.424 , 0.0114) 0.0269  22* (0.323 , 0.0084) 0.0259 

10** (0.292 , 0.0045) 0.0153  23* (0.329 , 0.0124) 0.0378 

11 (0.430 , 0.0100) 0.0233  24 (0.418 , 0.0096) 0.0229 

12 (0.434 , 0.0152) 0.0349  25* (0.328 , 0.0084) 0.0255 

13* (0.332 , 0.0130) 0.0393  26** (0.278 , 0.0057) 0.0205 

The data from 2017 used to determine the parameters of the process in an IC 

state was the Phase I data set (Start-up Stage Phase). While the data from 2018 

used was the Phase II data set (Control Phase). The materials consisted of 

46.2% observations from 2H, 34.6% observations from 1H, and 19.2% 

observations from 3E. Table 1 presents statistics of the data set, including the 

mean, standard deviation, and coefficient of variation of each observation. 

Based on Table 1, it can be seen that 50% of the initial observations were 

dominated by the 2H material, while the remaining observations were quite 

evenly distributed. It shows that in the middle of the first year, the demand for 

steel molds of 2H was higher than for the other types of material. Afterward, 

based on Table 1, the process target and variability were monitored by the �̅� 

and S chart, as presented in Figure 6(a)-(b), while Figure 6(c) shows the linear 

regression of S to �̅� in Phase I. The test results showed that there is a constant 

proportional relationship, 𝜎 = 𝛾 × 𝜇. This indicates that it is necessary to 

monitor the variability through a CV chart. 
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Figure 6 Process control based on (a) �̅�-chart and (b) 𝑆-chart, for the Phase I 

data set. Based on the mean, the process is OC, but the process is IC according to 

the S-chart. (c). Linear regression of S to �̅� in Phase I. 

 

Figure 7 The CV chart for Phase I data set with 𝑛 = 5. Based on the CV, the 

process control is IC. This result was used to estimate the IC parameter of the 

CV process, 
0

.  

Figure 7 presents the CV chart for the Phase I data set. It can be seen that the 

process variability of the Phase I data set based on the CV is in the IC state. 

𝑆 =0.0371. �̅� 
p-value: 0.0018 
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Then, the IC parameter of the CV, 
0
, could be estimated using the root-mean-

square of 𝐺𝑖, 𝑖 = 1,2, . . . , 𝑚, which was �̅� = 0.030, which was used as reference 

in determining the control limits in the process monitoring of the Phase II data 

set based on the DS-CV and MDS-CV charts. 

Table 2 Phase II data set (carbon composition of material in 2018), consisting 

of 25 observations (unit sample is per two weeks) and three types of materials 

(2H, 1H*, and 3E**) with 𝐴𝑆𝑆0 = 5 and samples size 𝑛1 = 3, 𝑛2 = 3. 

Obs. First Stage 
Second Stage 

DS-CV Chart MDS-CV Chart 

 (�̅�1, 𝑆1)     𝐺1 (�̅�2, 𝑆2)    𝐺2 (�̅�𝑐, 𝑆𝑐) 𝐺𝑐 

1 (0.443, 0.015)  0.034 

No need to take the second sample 2 (0.420, 0.010)  0.024 

3** (0.280, 0.009)   0.031 

4** (0.285, 0.005)  0.018 (0.278, 0.008) 0.027 (0.282, 0.006) 0.023 

5** (0.288, 0.006)  0.020 (0.287, 0.003) 0.010 (0.288, 0.005) 0.016 

6 (0.423, 0.015)  0.036 (0.430, 0.017) 0.040 (0.427, 0.016) 0.038 

7** (0.293, 0.008)  0.026 No need to take the second sample 

8* (0.313, 0.012)  0.037 (0.322, 0.010) 0.032 (0.318, 0.011) 0.035 

9** (0.287, 0.003)  0.010 (0.285, 0.005) 0.018 (0.286, 0.004) 0.014 

10* (0.319, 0.004)  0.011 (0.322, 0.003) 0.009 (0.320, 0.003) 0.010 

11** (0.285, 0.009)  0.030 

No need to take the second sample 12* (0.320, 0.010)  0.031 

13* (0.310, 0.009)  0.028 

14 (0.428, 0.019)  0.044 (0.427, 0.015) 0.036 (0.428, 0.017) 0.040 

15* (0.303, 0.020)  0.067 (0.312, 0.018) 0.056 (0.308, 0.019) 0.062 

16* (0.322, 0.016)  0.050 (0.318, 0.013) 0.040 (0.320, 0.014) 0.045 

17* (0.328, 0.010)  0.032 No need to take the second sample 

18* (0.320, 0.013)  0.041 (0.320, 0.010) 0.031 (0.320, 0.012) 0.037 

19* (0.320, 0.010)  0.031 
No need to take the second sample 

20 (0.427, 0.012)  0.027 

21 (0.413, 0.015)  0.037 (0.420, 0.010) 0.024 (0.417, 0.013) 0.031 

22 (0.428, 0.010)  0.024 No need to take the second sample 

23 (0.418, 0.024)  0.056 (0.415, 0.018) 0.043 (0.417, 0.021) 0.050 

24* (0.317, 0.013)  0.040 (0.312, 0.010) 0.033 (0.314, 0.012) 0.037 

25* (0.320, 0.010)  0.031 No need to take the second sample 

Note: Based on the MDS-CV chart, there was an OC signal detected at the 15th 

observation (bold). 

The Phase II data set (carbon composition data in 2018) consisted of 26 

observations, with a total sample size of 𝑛𝑡𝑜𝑡 = 6. Each observation was 

divided into two samples, the first sample with size 𝑛1 = 3 and the second 

sample with size 𝑛2 = 3. These data sets consisted of three types of materials, 

with 32% observations of 2H, 44% observations of 1H, and 24% observations 

of 3E. The summary statistics for the Phase II data set of the DS-CV and MDS-

CV charts are provided in Table 2, comprising the first sample CV at Stage 1, 
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𝐺1, the second sample CV, 𝐺2, for the DS-CV chart and the combined sample 

CV, 𝐺𝑐, for the MDS-CV chart at Stage 2, respectively. Note that we take the 

second sample only if the first sample CV falls within the warning area at Stage 

1.  

   
       (a)                                                              (b) 

Figure 8  Monitoring CV for the Phase II data set with 𝑛1 = 3 and 𝑛2 = 3, 

using (a) the DS-CV chart and (b) the MDS-CV chart. Based on the DS-CV 

chart, no OC signal was detected, while the OC signal was detected at the 15th 

observation, based on the MDS-CV chart in the second stage. 

Furthermore, with 𝐴𝑆𝑆0 = 5 and sample size (𝑛1 = 3, 𝑛2 = 3), we obtained that 

the optimal parameter values (𝑊, 𝐿1, 𝐿2) that minimize Eq. (14) for the DS-CV 

chart were (0.750, 5.721, 4.749) and for the MDS-CV chart were (0.751, 5.978, 

3.752). The CV values from Phase II using the DS-CV and MDS-CV chart are 

plotted in Figure 8(a)-(b), respectively, where the solid markers denote the 

sample CV in Stage 1 while the hollow markers denote the sample CV in Stage 

2. Based on the DS-CV chart, the OC signal was not detected for all 

observations, while the OC signal was detected at the 15th observation, based 

on the MDS-CV chart in Stage 2. This shows that performing the MDS-CV 

chart worked better than the DS-CV chart in detecting out-of-control signals. 

6 Conclusion  

This study developed a modified DS-CV chart, denoted as MDS-CV chart, by 

considering the combination of information from the first and the second 

sample to obtain the conclusion in the second stage. The optimization model 

proved that the MDS-CV chart outperformed the DS-CV chart based on the 

𝐴𝑅𝐿1 term, especially if the total sample size is small. If the total sample size is 

large, then the performance of the MDS-CV chart is equal to that of the DS-CV 

chart, indicating that using the MDS-CV chart is more efficient for taking the 

sample size, both in time and cost. Thus, it can be recommended to be applied 

in industry. The study case on the quality of the steel molding process in heavy 
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equipment companies showed that performing the MDS-CV chart worked better 

than the DS-CV chart in detecting out-of-control signals. Furthermore, the case 

study also showed that controlling the variability of several (three) types of 

materials with different mean and standard deviations of carbon composition 

could be done simultaneously using the CV chart. This is due to the 

proportional relationship between the mean and standard deviation of their 

carbon composition, so that control can be done based on the size of the CV. 

Acknowledgement 

The authors would like to thank RISTEK/BRIN Indonesia and PPMI FMIPA 

ITB 2023 for funding this research, and PT. Komatsu Indonesia (PT. KI) for the 

supplementary data. We also thank the anonymous reviewers for providing 

constructive comments to improve this version of the manuscript. 

Nomenclature 

𝛼 = Probability of a type-I error 

𝛾 = Population (process) CV  

𝛾0 = In-control process CV 

𝛾1 = Out-of-control process CV 

𝜏 = Shift size in the CV, 𝜏 = 𝛾1/𝛾0 

𝐹𝐺(. )/𝐹𝐺𝑐
(. ) = Cumulative distribution function of 𝐺/𝐺𝑐 

𝐹𝐺
−1(. ) = Inverse cumulative distribution function of 𝐺 

𝐹𝑇(. |𝑣, 𝛿) = Cumulative distribution function of non-central t-students 

distribution with degree of freedom is 𝑣 and parameter of non-

centrality is 𝛿  

𝐹𝑇
−1(. |𝑣, 𝛿) = Inverse cumulative distribution function of non-central t-students 

distribution with parameter of non-centrality is 𝛿 and degree of 

freedom is 𝑣. 

𝐺 = Sample CV 

𝐺𝑐 = Combined sample CV 

𝐺0 = In-control process CV 

𝑛 = Sample size 

𝑛0 = Desired value of ASS 

𝑛1 = First sample size 

𝑛2 = Second sample size 

𝑚 = Number of in-control Phase I samples  

𝑃𝑎 = Probability that the process is declared in-control 

𝑃𝑎1/𝑃𝑎2 = Probability that the process is declared in-control at Stage 1 / 

Stage 2 
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