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ABSTRACT  

This study discusses the dynamic analysis of the Susceptible–Exposed–Infected–Hospitalized–
Critical–Recovered–Dead (SEIHCRD) model using the fourth order Runge-Kutta method. The data 
used in this study is original data on Infected, Hospitalized and Critical cases in Indonesia from 
August to October 2021. Dynamic analysis of the model is carried out by determining disease-free 
and endemic equilibrium points, local stability analysis of disease-free and endemic equilibrium 
points, and determine the basic reproduction number. The result of this analysis is that the 
number of new infection cases in Indonesia will decrease over time and the COVID-19 outbreak 
will end. Then a numerical simulation was carried out using the fourth order Runge-Kutta method 
in dealing with COVID-19 cases in Indonesia. The simulations and calculations show that the rate 
of contact of susceptible individuals with infected individuals is 0.06 per day, the rate of 
movement of individuals in the Exposed class to the Infected class is 0.14 per day, the probability 
of infected individuals being hospitalized with a value of 0.95, the probability that COVID-19 
patients become critical and enter the Intensive Care Unit (ICU) with a value of 0.485, and the 
probability of a critical patient dying with a value of 0.25 affects the slope of Infected, Hospitalized 
and Critical cases in Indonesia. Where Infected cases will be sloping with an absolute error value 
of 28%, Hospitalized cases with an absolute error value of 20% and Critical cases with an absolute 
error value of 33%. This research provides information that it is estimated that the daily infection 
cases of COVID-19 will decrease and be close to zero. So that infected patients who must be 
hospitalized and admitted to the Intensive Care Unit (ICU) are also decreasing, it is hoped that the 
COVID-19 pandemic will not happen again. 
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INTRODUCTION 

Since the beginning of 2019, the world has been fighting together against COVID-
19 which is a new virus. This virus spread very quickly, causing several countries to suffer 
from a shortage of inpatient beds and Intensive Care Unit (ICU) beds [1],[10], one of them 
in Indonesia. In June 2021 in Indonesia, every day the number of COVID-19 patients who 
die without receiving treatment is increasing. This is due to the increasing number of 
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COVID-19 cases and the decreasing availability of hospital beds. So, to overcome this 
condition, the Minister of Health asked hospitals in various regions to make the 
emergency room an additional isolation room. Meanwhile, emergency services were 
moved to emergency tents set up outside the hospital. Unfortunately, this solution has not 
been fully able to overcome the surge in COVID-19 cases, as a result, some patients with 
moderate and severe symptoms who do not receive an inpatient bed are forced to be 
placed in hospital halls, while several other patients die because they do not receive 
treatment. Therefore, a mathematical model is needed that can assist the government in 
understanding the scenario of the spread of COVID-19 in Indonesia and knowing how 
many inpatient beds and ICU beds are needed at any given time. In this case, the 
mathematical model that can be applied in Indonesia is the SEIHCRD model. 

The SEIHCRD model is a modification of the Susceptible – Exposed – Infected - 
Recovered (SEIR) model [1]. This model added several additional compartments, 
including Hospitalized (H), Critical (C), and Dead (D). Where Hospitalized (H) itself is an 
individual infected with COVID-19 with moderate and severe symptoms or who has a 
congenital disease or is elderly who is hospitalized. Then Critical (C) is a COVID-19 patient 
who is hospitalized and then in a critical condition, so he is at high risk of experiencing 
complications and requires treatment in the Intensive Care Unit (ICU) room. Meanwhile, 
Dead (D) was a critical COVID-19 patient and had received treatment in the Intensive Care 
Unit (ICU), but eventually died. Each compartment in the model has a relationship with 
each other, that is, susceptible individuals in the Susceptible (S) class experience contact 
with infected individuals at a rate of 𝛽 and do not keep their distance at a rate of 𝜂, so 
these susceptible individuals turn into exposed and enter the Exposed class. (E). 
Furthermore, individuals who have been exposed will turn into infected with a transfer 
rate of 𝛿 and enter the Infected (I) class. Then the infected individual will experience the 
development of COVID-19 symptoms with an average time of 𝜓, where if the symptoms 
are moderate or severe then the infected individual will enter the Hospitalized (H) class. 
Meanwhile, infected individuals with mild symptoms will carry out independent isolation 
until they recover with an average recovery time of 𝛾 and enter the Recovered (R) class. 

Next, COVID-19 patients in the Hospitalized (H) class will recover and enter the 
Recovered (R) class after being hospitalized with an average length of stay of 𝜒 . Then 
COVID-19 patients in the Hospitalized (H) class can also experience a critical condition 
with a probability of θ and enter the Critical class (C). Where critical patients in the Critical 
(C) class will recover and enter the Recovered (R) class with an average recovery time 
from a critical condition of 𝜇, critical patients can also die and enter the Dead (D) class 
with a probability of 𝜔 and the average Intensive Care Unit (ICU) admission time is 𝜑. 

In 2014, [2] study a VSEIR model for transmission of tuberculosis (tb) disease in 
north Sumatra, Indonesia. (V), Susceptible (S) Infected (I), and Recovered (R) (VSIR) 
model for transmission of Tuberculosis in North Sumatera is modified. [3] use a nonlinear 
susceptible, exposed, infectious and removed transmission model with added behavioral 
and government policy dynamics. Three models were used to fit and predict the epidemic 
situation in China: a modified SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) 
dynamic model, a neural network method LSTM (Long Short-Term Memory), and a GWR 
(Geographically Weighted Regression) model reflecting spatial heterogeneity [4]. [5] 
aimed to analyze the situation of COVID-19 in Thailand and the challenging disease 
control by employing a dynamic model to determine prevention approaches. [6] propose 
a new model named Dynamic – Susceptible – Exposed – Infective -Quarantined (D-SEIQ), 
by making appropriate modifications of the Susceptible - Exposed – Infective - Recovered 
(SEIR) model and integrating machine learning based parameter optimization under 
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epidemiological rational constraints. [7] predict the long-term dynamic COVID-19 in 
Indonesia. Covid-19 is a type of virus that infects the respiratory tract or is also known as 
severe acute respiratory syndrome Corona virus-2 (SARS-CoV-2). Researchers through 
this study were trying to build a mathematical model of the spread of the Covid-19 virus 
and analyzed the stability of its critical points [8]. [9] propose a framework for stress 
testing and financial scenario generation of market indicators. [10] develop a dynamic 
transmission model to investigate the impact of social media, particularly tweets via the 
social networking platform, Twitter on the number of influenza and COVID-19 cases of 
infection and deaths. [11] propose a new seven compartmental model Susceptible – 
Exposed – Infected -Asymptomatic – Quarantined – Fatal - Recovered (SEIAQFR) which is 
based on classical Susceptible-Infected-Recovered (SIR) model dynamic of infectious 
disease and considered factors like asymptomatic transmission and quarantine of 
patients. 

In 2020, [1] conducted an analysis of the SEIHCRD model using the Least-Square 
and Levenberg Marquadt methods in determining scenarios for the spread of COVID-19. 
Where this study considers the existence of a Case Fatality Rate based on age and 
comorbidity categories which will affect the spread scenario. In the following year [18] 
performed a dynamic analysis on the SEIHCRD model in the Kenyan population. The 
analysis was carried out to find out how sensitive the basic reproduction number analysis 
is to the parameters of physical distancing and mass testing, considering the presence of 
migration in the studied population. Then, the following year [11],[18], [19] also 
conducted a dynamic analysis of the SEIHCRD model on the spread of COVID-19 in 
Indonesia. Where the research aims to determine the sensitivity analysis of the 
parameters of physical distancing and mass testing of basic reproduction numbers. The 
flow of infection spread in this model includes, among others, susceptible individuals in 
the Susceptible class will be exposed and enter the Exposed class. Then the exposed 
individual will be infected and enter the Infectious or Hospitalized class. Furthermore, 
individuals in the Infectious and Hospitalized class have the possibility of recovering and 
dying. Where individuals in the Hospitalized class can also experience critical conditions 
and enter the Critical class. Then finally, the individual in this Critical class will die and 
enter the Dead class. 

In contrast to these studies, in this study the proposed SEIHCRD model will be 
modified by adding the natural birth rate and natural death rate parameters which will 
then be analyzed using dynamic analysis. After that the model will be approached through 
a numerical method, namely the fourth order Runge-Kutta method to display the results 
of numerical calculations and their simulations. The data used in this study is original data 
in Indonesia from Infected, Hospitalized, Critical, Recovered and Dead cases from August 
to October, sourced from the website of the Ministry of Health and the Indonesian COVID-
19 Task Force. Meanwhile, the original data from the Susceptible and Exposed cases are 
not available in Indonesia. Then this data will be used to find out whether the solution 
graph from the model can approach the solution graph from the original data. So, based 
on the background previously described, the author wants to apply the SEIHCRD model 
in solving the scenario of the spread of COVID-19 in Indonesia using the fourth order 
Runge-Kutta method. 
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METHODS 

Data and Data Sources 

In this study, the type of data used is secondary data from August to October 2021, 
in the form of daily COVID-19 cases on the website SATGAS COVID-19 and availability of 
hospital beds on the website KEMENKES [17]. This data was taken from August to October 
due to the complete data on daily cases of COVID-19 and the availability of hospital beds. 

Research Steps 

1. Dynamic analysis on the SEIHCRD model: 

a. Identify the initial values and parameters used. 
b. Determine the equilibrium point 
c. Determine the basic reproduction number (𝑅0) 
d. Define stability analysis 

2. Numerical Simulation Using Fourth Order Runge-Kutta Method 

a. Specifies the set value.  
b. Perform the calculation of the first iteration using the fourth order Runge-Kutta 

formula by entering the obtained constant values. 
c. Perform calculations for the second to the 92nd iteration using the Octave 

software 
3. Interpretation of Results 

a. Displays graphs obtained from Octave software. 
b. Analyze the results of the graph obtained 
c. Make conclusions from the results of the analysis. 

RESULTS AND DISCUSSION  

Seihcrd Model After Modification 

The following is a modified SEIHCRD model:  
𝑑𝑆(𝑡)

𝑑𝑡
=  𝜉𝑁(𝑡) −

𝜂𝛽𝐼(𝑡)𝑆(𝑡)

𝑁(𝑡)
− 𝜏𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝜂𝛽𝐼(𝑡)𝑆(𝑡)

𝑁(𝑡)
− 𝛿𝐸(𝑡) − 𝜏𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛿𝐸(𝑡) − 𝜓𝛼𝐼(𝑡) − 𝛾𝐼(𝑡) + 𝛼𝛾𝐼(𝑡) − 𝜏𝐼(𝑡) 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝜓𝛼𝐼(𝑡) − 𝜎𝜃𝐻(𝑡) − 𝜒𝐻(𝑡) + 𝜒𝜃𝐻(𝑡) 

                 −𝜏𝐻(𝑡)                                                                                                                                (1) 
𝑑𝐶(𝑡)

𝑑𝑡
= 𝜎𝜃𝐻(𝑡) − 𝜑𝜔𝐶(𝑡) − 𝜇𝐶(𝑡) + 𝜇𝜔𝐶(𝑡) − 𝜏𝐶(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝛼𝛾𝐼(𝑡) + 𝜇𝐶(𝑡) − 𝜇𝜔𝐶(𝑡) + 𝜒𝐻(𝑡) 

                 −𝜒𝜃𝐻(𝑡) − 𝜏𝑅(𝑡) 
𝑑𝐷(𝑡)

𝑑𝑡
= 𝜑𝜔𝐶(𝑡) 

 
The compartment diagram of the SEIHCRD model is shown in the following figure: 
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Figure 1. SEIHCRD Model Compartment Diagram 

 

Identify Initial Values and Parameters Used 

The following are the initial values and parameters in this study: 
 

Table 1. The Initial Value of the SEIHCRD Model in Indonesia 
 

Variabel Definition Value 
(𝑁0) The total number of people living in Indonesia 272.229.372 
(𝑆0) The number of individuals who are vulnerable to 

time 
272.008.906 

(𝐸0) The number of individuals exposed to time 71.788 
(𝐼0) Number of infected individuals over time 30.738 
(𝐻0) Number of infected individuals hospitalized over 

time 
70.568 

(𝐶0) The number of infected patients who are critical to 
time 

7.926 

(𝑅0) The number of infected individuals who recover 
over time 

39.446 

(𝐷0) The number of critically ill patients who died over 
time 

1.604 

 

Table 2. Parameter Value of SEIHCRD Model in Indonesia 
 

Parameter Definition Value Source 

𝜉 Natural birth rate 
6.25
× 10−3 

[12] 

𝜏 Natural death rate 
6.25
× 10−3 

[12] 

𝜂 Social distancing factor 1 
[1] 

 
Parameter Definition Value Source 

𝛿 
The rate of individual movement in the Exposed class to the 

Infected class 
[0,1] [13] 

𝜓 Average time to development of COVID-19 symptoms 
2

14
= 0.142 [14] 

𝛼 The probability of an infected individual being hospitalized [0,1] [1] 

𝛾 The average recovery time for COVID-19 patients to recover 
14

42
= 0.33 [15] 
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𝜎 Average time from hospitalization to critical and ICU admission 
1

5
= 0.2 [16] 

𝜃 
Probability of a COVID-19 patient becoming critical and admitted 

to the ICU 
[0,1] [1] 

𝜔 The probability that a critical patient will die [0,1] [1] 

𝜇 Average recovery time of patients from critical condition 
12

18
= 0.67 [14] 

𝜒 Average hospitalization time 
1

14
= 0.07 [16] 

Determining the Equilibrium Point 

The equilibrium points are divided into two, namely the disease-free equilibrium point 
and the endemic equilibrium point. In determining the two equilibrium points, each 

equation in the system of equations (1) must be zero, or 
𝑑𝑆

𝑑𝑡
= 0,

𝑑𝐸

𝑑𝑡
= 0,

𝑑𝐼

𝑑𝑡
= 0,

𝑑𝐻

𝑑𝑡
=

0,
𝑑𝐶

𝑑𝑡
= 0,

𝑑𝑅

𝑑𝑡
= 0,

𝑑𝐷

𝑑𝑡
= 0. So that the equation in (1) becomes: 

𝜉𝑁 −
𝜂𝛽𝐼∗𝑆∗

𝑁
− 𝜏𝑆∗ = 0                                                                                                                 (2) 

𝜂𝛽𝐼∗𝑆∗

𝑁
− 𝛿𝐸∗ − 𝜏𝐸∗

= 0                                                                                                                           (3) 
𝛿𝐸∗ − 𝜓𝛼𝐼∗ − 𝛾𝐼∗ + 𝛼𝛾𝐼∗ − 𝜏𝐼∗ = 0                                                                                          (4) 
𝜓𝛼𝐼∗ − 𝜎𝜃𝐻∗ − 𝜒𝐻∗ + 𝜒𝜃𝐻∗ − 𝜏𝐻∗ = 0                                                                                  (5) 
𝜎𝜃𝐻∗ − 𝜑𝜔𝐶∗ − 𝜇𝐶∗ + 𝜇𝜔𝐶∗ − 𝜏𝐶∗ = 0                                                                                 (6) 
𝛾𝐼∗ − 𝛼𝛾𝐼∗ + 𝜇𝐶∗ − 𝜇𝜔𝐶∗ + 𝜒𝐻∗ − 𝜒𝜃𝐻∗ − 𝜏𝑅∗ = 0                                                           (7) 
 𝜑𝜔𝐶∗ = 0                                                                                                                                         (8) 

Furthermore, equations (5) − (8)  are not included in the system (11) because 
equations (2) − (4) do not depend explicitly on 𝐻∗, 𝐶∗, 𝑅∗, and 𝐷∗.Where 𝐻∗ can be found 
by entering the obtained function 𝐼(𝑡)  into equation (5), then  𝐶∗ can be found by entering 
the obtained function 𝐻(𝑡) into equation (6), then 𝑅∗ and 𝐷∗ is not explicitly stated in the 
equation. The following is a system (9)  for which we will find the disease-free equilibrium 
point and the endemic equilibrium point: 

𝜉𝑁 −
𝜂𝛽𝐼∗𝑆∗

𝑁
− 𝜏𝑆∗ = 0      

𝜂𝛽𝐼∗𝑆∗

𝑁
− 𝛿𝐸∗ − 𝜏𝐸∗ = 0                                                                                                              (9) 

𝛿𝐸∗ − 𝜓𝛼𝐼∗ − 𝛾𝐼∗ + 𝛼𝛾𝐼∗ − 𝜏𝐼∗ = 0 

The disease-free equilibrium point is the point at which there is no disease in the 
population. So that there are no infected individuals or 𝐼∗ = 0, then the disease-free 
equilibrium point is obtained as follows: 

                    𝐸0 = (𝑆0, 𝐸0, 𝐼0) = (
𝜉𝑁

𝜏
, 0, 0)                                                                                 (10) 

 The endemic equilibrium point is a point that indicates the conditions under which 
there is a spread of disease in the population. So that the endemic equilibrium point is 
obtained as follows: 

𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗) 

      = (
𝜌𝑁

𝜂𝛽𝛿
,
−𝜌𝜏𝑁 + 𝜂𝛽𝛿𝜉𝑁

 𝜂𝛽𝛿 (𝛿 + 𝜏)
,
𝜌𝜏𝑁 + 𝜂𝛽𝛿𝜉𝑁

𝜌𝜂𝛽
  )                                                                 (11) 

with 
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𝜌 = 𝜓𝛼𝛿 + 𝜓𝛼𝜏 − 𝛼𝛿𝛾 − 𝛼𝛾𝜏 + 𝛿𝛾 + 𝛿𝜏 + 𝛾𝜏 + 𝜏2 
 

Determining the Basic Reproduction Number (𝑹𝟎) 

 Based on the equation model of the infected subsystem, the Next-Generation matrix 
will be obtained. The steps in determining the basic reproduction number (𝑅0)  are as 
follows: 

1. Take an equation containing infected subsystems, where in this model the infected 

subsystems are E and I. 

2. Linearization of the infected subsystem at the disease-free equilibrium point using 

the Jacobian matrix as follows: 

  𝐽(𝐸1)  = [

𝑑𝐸

𝑑𝐸

𝑑𝐸

𝑑𝐼
𝑑𝐼

𝑑𝐸

𝑑𝐼

𝑑𝐼

] 

            = [
−(𝛿 + 𝜏)

𝜂𝛽𝑆

𝑁
𝛿 −(𝜓𝛼 + 𝛾 − 𝛼𝛾 + 𝜏)

] 

𝐽(𝑆,𝐸,𝐼) = [

𝑑𝐸

𝑑𝐸

𝑑𝐸

𝑑𝐼
𝑑𝐼

𝑑𝐸

𝑑𝐼

𝑑𝐼

] 

            = [
−(𝛿 + 𝜏)

𝜂𝛽𝜉

𝜏
𝛿 −(𝜓𝛼 + 𝛾 − 𝛼𝛾 + 𝜏)

] 

3. Next, the decomposition of the Jacobian matrix (J)  will be carried out. after that 

the basic reproduction number can be searched using the Next-Generation. 

𝑭 = (0
𝜂𝛽𝑆

𝑁
0 0

) = (0
𝜂𝛽𝜉

𝜏
0 0

) 

            𝑽 =  (
(𝛿 + 𝜏) 0

−𝛿 (𝜓𝛼 + 𝛾 − 𝛼𝛾 + 𝜏)
) 

Where 𝑭 is a transmission matrix that describes the rate of adding cases, while 𝑽  
is a transition matrix that describes the rate of case reduction. So, obtained: 

𝑽−𝟏 =

(

 

1

𝛿 + 𝜏
0

−𝛿

𝛼𝛾𝛿 − 𝛾𝛿 − 𝜏2 + 𝛼𝛾𝜏 − 𝛾𝜏 − 𝛿𝜏 − 𝛼𝛿𝜓 − 𝛼𝜏𝜓

−1

𝛼𝛾 − 𝛾 − 𝜏 − 𝜓𝛼)

  

 
4. Next calculate 𝑅0  where 𝑅0 = 𝜌(𝑭𝑽−𝟏 ), where 𝜌(𝑭𝑽−𝟏 ) is the dominant absolute 

eigenvalue (spectral radius) of 𝑲  (Next-Generation Matrix).  

So that the basic reproduction number (𝑅0)  is: 
𝑅0 = 𝜌(𝑲) 

      =
𝜂𝛽𝛿𝜉

𝜏3 − 𝛼𝛾𝜏2 + 𝛾𝜏2 + 𝛿𝜏2 − 𝛼𝛾𝛿𝜏 + 𝛾𝛿𝜏 + 𝛼𝜏2𝜓 + 𝛼𝛿𝜏𝜓
 

Let 
𝜙 = 𝜓𝛼 + 𝛾 − 𝛼𝛾 + 𝜏 
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Then, 

𝑅0 =
𝜂𝛽𝛿𝜉

𝜏𝜙(𝛿 + 𝜏)
 

Define Local Stability Analysis 

The mathematical model in equation (9)  is a system of nonlinear differential 
equations. So, in looking for stability analysis, linearization will be carried out around the 
equilibrium point. Here is the jacobi matrix from the results of linearization on (9): 

𝐽 =

[
 
 
 
 
 
𝜕𝑆

𝜕𝑆

𝜕𝑆

𝜕𝐸

𝜕𝑆

𝜕𝐼
𝜕𝐸

𝜕𝑆

𝜕𝐸

𝜕𝐸

𝜕𝐸

𝜕𝐼
𝜕𝐼

𝜕𝑆

𝜕𝐼

𝜕𝐸

𝜕𝐼

𝜕𝐼 ]
 
 
 
 
 

= 

[
 
 
 
 −

𝜂𝛽𝐼

𝑁
− 𝜏 0 −

𝜂𝛽𝑆

𝑁
𝜂𝛽𝐼

𝑁
−𝛿 − 𝜏

𝜂𝛽𝑆

𝑁
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏]

 
 
 
 

 

1. Local Stability Analysis of Disease-Free Equilibrium Points 

Based on the disease-free equilibrium point that has been obtained, namely 𝐸0 =

(
𝜉𝑁

𝜏
, 0,0), then the Jacobi matrix obtained from the linearization around the disease-free 

equilibrium point is: 

𝑱(𝑬𝟎) =

[
 
 
 
 −𝜏 0 −

𝜂𝛽𝜉𝑁

𝜏𝑁

0 −𝛿 − 𝜏
𝜂𝛽𝜉𝑁

𝜏𝑁
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏]

 
 
 
 

 

            =

[
 
 
 
 −𝜏 0 −

𝜂𝛽𝜉

𝜏

0 −𝛿 − 𝜏
𝜂𝛽𝜉

𝜏
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏]

 
 
 
 

 

Furthermore, the eigenvalues of the matrix 𝑱(𝑬𝟎) are obtained through the following 
equation: 

𝑑𝑒𝑡|𝑱(𝑬𝟎) − 𝝀𝑰| = 0 

[
 
 
 
 −𝜏 − 𝜆 0 −

𝜂𝛽𝜉

𝜏

0 −𝛿 − 𝜏 − 𝜆
𝜂𝛽𝜉

𝜏
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏 − 𝜆]

 
 
 
 
−𝜏 − 𝜆 0

0 −𝛿 − 𝜏 − 𝜆
0 𝛿

 = 0 

 
So that the characteristic equation is obtained as follows 

                      𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0                                                                   (12) 
With  
𝑎0 = 𝜏 
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𝑎1 = 3𝜏2 − 𝛼𝛾𝜏 + 𝜓𝛼𝜏 + 𝛾𝜏 + 𝛿𝜏 
𝑎2 = 3𝜏3 + 2𝜓𝛼𝜏2 + 2𝛿𝜏2 + 2𝛾𝜏2 − 2𝛼𝛾𝜏2 + 𝜓𝛼𝛿𝜏 + 𝛾𝛿𝜏 − 𝛼𝛾𝛿𝜏 − 𝜂𝛽𝜉𝛿 
𝑎3 = 𝜏4 − 𝛼𝛾𝜏3 + 𝛾𝜏3 + 𝛿𝜏3 + 𝛾𝛿𝜏2 − 𝜂𝛽𝜉𝛿𝜏 + 𝜓𝛼𝜏3 + 𝜓𝛼𝛿𝜏2 − 𝛼𝛾𝛿𝜏2 

Because the values of the roots in the characteristic equation (12)  are difficult to 
obtain, using the Routh-Hurwitz criteria will determine the stability of the 𝐸0  
equilibrium point. So based on these criteria, the equilibrium point 𝐸0 will be 
asymptotically stable if and only if it fulfills the following conditions: 

a. 𝑎0 > 0 
b. 𝑎1 > 0 
c. 𝑎1 ∙ 𝑎2 − 𝑎0 ∙ 𝑎3 > 0 
d. 𝑎3 > 0 

Then using the parameters in Table 2 is obtained 
1) 𝑎0 = 0.00625 > 0, 
2) 𝑎1 = 0.0019384375 > 0, 
3) 𝑎1 ∙ 𝑎2 − 𝑎0 ∙ 𝑎3 = 0,000000164269103 > 0, 
4) 𝑎3 = 0.000005809108887 > 0 
With 

𝑎2 = 0.0001034730469 

Based on the above calculations, it is found that conditions 1-4 are met and all 
eigenvalues in the characteristic equation for the disease-free equilibrium point are 
negative, which means that the disease-free equilibrium point in the locally 
asymptotically stable SEIHCRD model. 

2. Local Stability Analysis of Endemic Equilibrium Points 

Based on the disease-free equilibrium point that has been obtained, namely 𝐸∗ =

(
𝜌𝑁

𝜂𝛽𝛿
,
−𝜌𝜏𝑁+𝜂𝛽𝛿𝜉𝑁

 (𝛿+𝜏) 
,
𝜌𝜏𝑁+𝜂𝛽𝛿𝜉𝑁

𝜌𝜂𝛽
), then the Jacobi matrix obtained from the results The 

linearization around the disease-free equilibrium point is: 

𝑱(𝑬𝟏) =

[
 
 
 
 
 −

𝜂𝛽(𝜌𝜏𝑁 + 𝜂𝛽𝛿𝜉𝑁)

𝜌𝜂𝛽𝑁
− 𝜏 0 −

𝜂𝛽𝜌𝑁

𝜂𝛽𝛿𝑁
𝜂𝛽(𝜌𝜏𝑁 + 𝜂𝛽𝛿𝜉𝑁)

𝜌𝜂𝛽𝑁
−𝛿 − 𝜏     

𝜂𝛽𝜌𝑁

𝜂𝛽𝛿𝑁
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏]

 
 
 
 
 

 

=

[
 
 
 
 
 
−2𝜌𝜏 − 𝜂𝛽𝛿𝜉

𝜌
0 −

𝜌

𝛿
𝜌𝜏 + 𝜂𝛽𝛿𝜉

𝜌
−𝛿 − 𝜏     

𝜌

𝛿
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏]

 
 
 
 
 

 

with  

𝜌 = 𝜓𝛼𝛿 + 𝜓𝛼𝜏 − 𝛼𝛿𝛾 − 𝛼𝛾𝜏 + 𝛿𝛾 + 𝛿𝜏 + 𝛾𝜏 + 𝜏2 

Furthermore, the eigenvalues of the matrix 𝑱(𝑬𝟏) are obtained through the following 
equation: 

𝑑𝑒𝑡|𝑱(𝑬𝟏) − 𝝀𝑰| = 0 
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𝑑𝑒𝑡

[
 
 
 
 
 
−2𝜌𝜏 − 𝜂𝛽𝛿𝜉 − 𝜆𝜌

𝜌
0 −

𝜌

𝛿
𝜌𝜏 + 𝜂𝛽𝛿𝜉

𝜌
−𝛿 − 𝜏 − 𝜆     

𝜌

𝛿
0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏 − 𝜆]

 
 
 
 
 

= 0 

 

[
 
 
 
 
−2𝜌𝜏−𝜂𝛽𝛿𝜉−𝜆𝜌

𝜌
0 −

𝜌

𝛿

𝜌𝜏+𝜂𝛽𝛿𝜉

𝜌
−𝛿 − 𝜏 − 𝜆   

𝜌

𝛿

0 𝛿 −𝜓𝛼 − 𝛾 + 𝛼𝛾 − 𝜏 − 𝜆]
 
 
 
 

−2𝜌𝜏−𝜂𝛽𝛿𝜉−𝜆𝜌

𝜌
0

𝜌𝜏+𝜂𝛽𝛿𝜉

𝜌
−𝛿 − 𝜏 − 𝜆

0 𝛿

  

  = 0 
 

So that the characteristic equation is obtained as follows 

                   𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0                                                                  (13) 
with 
𝑎0 = 𝜌 
𝑎1 = 4𝜌𝜏 + 𝛽𝛿𝜂𝜉 − 𝛼𝛾𝜌 + 𝛾𝜌 − 𝛿𝜌 − 𝛼𝜌𝜓 
𝑎2 = 3𝛾𝜌𝜏 + 3𝛿𝜌𝜏 − 𝜌2 + 3𝛼𝜌𝜏𝜓 − 3𝛼𝛾𝜌𝜏 − 𝛼𝛾𝛿𝜌 + 𝛾𝛿𝜌 + 𝛽𝛿2𝜂𝜉 + 𝛽𝛾𝛿𝜂𝜉 
          +2𝛽𝛿𝜂𝜉𝜏 − 𝛼𝛽𝛾𝛿𝜂𝜉 + 𝛼𝛽𝛿𝜂𝜉𝜓 + 𝛼𝛿𝜌𝜓 + 5𝜌𝜏2 
𝑎3 = 𝛽𝛾𝛿2𝜂𝜉 − 𝛼𝛽𝛾𝛿2𝜂𝜉 + 2𝜌𝜏3 + 𝛽𝛿𝜂𝜉𝜏2 − 2𝛼𝛾𝜌𝜏2 + 2𝛾𝜌𝜏2 + 2𝛿𝜌𝜏2 + 
          𝛽𝛿2𝜂𝜉𝜏 − 𝛼𝛽𝛾𝛿𝜂𝜉𝜏 + 𝛽𝛾𝛿𝜂𝜉𝜏 − 𝜌2𝜏 − 2𝛼𝛾𝛿𝜌𝜏 + 2𝛾𝛿𝜌𝜏 + 𝛼𝛽𝛿2𝜂𝜉𝜓 + 
          2𝛼𝜌𝜏2𝜓 + 𝛼𝛽𝛿𝜂𝜉𝜏𝜓 + 2𝛼𝛿𝜌𝜏𝜓 

Because the value of the roots of the characteristic equation (13) is difficult to obtain, 
then by using the Routh-Hurwitz criterion, the stability properties of the equilibrium 
point 𝐸∗ will be known. So based on these criteria, the equilibrium point 𝐸∗ will be 
asymptotically stable if and only if the following conditions are met: 

a. 𝑎0 > 0 
b. 𝑎1 > 0 
c. 𝑎1 ∙ 𝑎2 − 𝑎0 ∙ 𝑎3 > 0 
d. 𝑎3 > 0  

So, by using the parameters in Table 2, we get 

a. 𝑎0 = 0.0230563125 > 0, 
b. 𝑎1 = −0.005328843338 < 0, 
c. 𝑎1 ∙ 𝑎2 − 𝑎0 ∙ 𝑎3 = −0,0000005639381147 < 0, 
d. 𝑎3 = 0.000004532916074 > 0 

with 

𝑎2 = 0.00008621491684 

Based on the above calculations, it was found that conditions 2 and 3 were not 
fulfilled so that there were eigenvalues in the characteristic equation of the endemic 
equilibrium point with a positive value, which means that the endemic equilibrium point 
in the SEIHCRD model was unstable. 

Define Global Stability Analysis 

Based on the system (9) that S, E and I do not depend on H,C,R and D. hence dynamic 
analysis using S,E and I 
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𝜉𝑁 −
𝜂𝛽𝐼∗𝑆∗

𝑁
− 𝜏𝑆∗ = 0      

𝜂𝛽𝐼∗𝑆∗

𝑁
− 𝛿𝐸∗ − 𝜏𝐸∗ = 0                                                   

𝛿𝐸∗ − 𝜓𝛼𝐼∗ − 𝛾𝐼∗ + 𝛼𝛾𝐼∗ − 𝜏𝐼∗ = 0 

Let 
𝜙 = 𝜓𝛼 + 𝛾 − 𝛼𝛾 + 𝜏 

Then, the equilibrium points are: 

𝐸0 = (
𝜉𝑁

𝜏
, 0,0) 

𝐸∗ = (
𝜌𝑁

𝜂𝛽𝛿
,
𝜂𝛽𝛿𝜉𝑁 − 𝜌𝜏𝑁

𝜂𝛽𝛿(𝛿 + 𝜏)
,
𝜂𝛽𝛿𝜉𝑁 + 𝜌𝜏𝑁

𝜂𝛽𝜌
) 

And the Basic Reproduction Number (𝑅0) is: 

𝑅0 =
𝜂𝛽𝛿𝜉

𝜏𝜙(𝛿 + 𝜏)
. 

1. Theorem 1 

Disease-free equilibrium points 𝐸0 from a global asymptotic stable model if 𝑅0 ≤ 1 
and unstable if 𝑅0 > 1. 

Proof: 
Define the Lyapunov Function  

ℒ = (𝑆 − 𝑆0 − 𝑆0 ln (
𝑆

𝑆0
)) + 𝐸 + 𝐼 

 
So that the derivative of the Lyapunov Function against time is as follows 

𝑑ℒ

𝑑𝑡
= (1 −

𝑆0

𝑆
)

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
 

       =
1

𝑆
(𝑆 − 𝑆0) (𝜉𝑁 −

𝜂𝛽𝑆𝐼

𝑁
− 𝜏𝑆) + (

𝜂𝛽𝑆𝐼

𝑁
− (𝛿 + 𝜏)𝐸) + (𝛿𝐸 − 𝜙𝐼) 

       =
1

𝑆
(𝑆 − 𝑆0)(𝜉𝑁 − 𝜏𝑆) + (

𝜂𝛽𝑆0𝐼

𝑁
− (𝛿 + 𝜏)𝐸) + (𝛿𝐸 − 𝜙𝐼) 

       = −
𝜏

𝑆
(𝑆 − 𝑆0)2 + (

𝜂𝛽𝑆0

𝑁
− 𝜙) 𝐼 − 𝜏𝐸 

       = −
𝜏

𝑆
(𝑆 − 𝑆0)2 − 𝜏𝜙 (1 −

𝑅0

𝛿/(𝛿 + 𝜏)
) 𝐼 − 𝜏𝐸 

 
If 𝑅0 ≤ 1 so ℒ′ < 0 for each (𝑆, 𝐸, 𝐼) ≠ (𝑆0, 0,0). The singularity proved that {𝐸0} is a 

set that satisfies the nature ℒ′ = 0. Based on the principle of Invariant Lasalle 
equilibrium point 𝐸0 globally asymptotic stable.  

 
2. Theorem 2 

Endemic equilibrium points 𝐸∗ from a global asymptotic stable model if 𝑅0 > 1. 
Proof: 
Define quadratic Lyapunov Function 
 

𝒱 =
1

2
[(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝐼 − 𝐼∗)]2 
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So that the derivative of the Lyapunov Function against time is as follows 

          
𝑑𝒱

𝑑𝑡
= [(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝐼 − 𝐼∗)]

𝑑(𝑆 + 𝐸 + 𝐼)

𝑑𝑡
 

            = [(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝐼 − 𝐼∗)](𝜉𝑁 − 𝜏𝑆 − 𝜏𝐸 − 𝜙𝐼) 
 
  Assume 𝜉𝑁 = 𝜏𝑆∗ + 𝜏𝐸∗ − 𝜙𝐼∗ so that it is obtained 
 

     
𝑑𝒱

𝑑𝑡
= [(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝐼 − 𝐼∗)][−𝜏(𝑆 − 𝑆∗) − 𝜏(𝐸 − 𝐸∗) − 𝜙(𝐼 − 𝐼∗)] 

            = −𝜏(𝑆 − 𝑆∗)2 −  𝜏(𝐸 − 𝐸∗)2 −  𝜙(𝐼 − 𝐼∗)2 − 𝜏(𝑆 − 𝑆∗)[(𝐸 − 𝐸∗) + (𝐼 − 𝐼∗)] 
                −𝜏(𝐸 − 𝐸∗)[(𝑆 − 𝑆∗) + (𝐼 − 𝐼∗)] − 𝜙(𝐼 − 𝐼∗)[(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗)] 

 
𝑑𝒱

𝑑𝑡
 negatively valued and 

𝑑𝒱

𝑑𝑡
= 0 if and only if 𝑆 = 𝑆∗, 𝐸 = 𝐸∗ and 𝐼 = 𝐼∗. A set of 

solutions that do not contain any other solutions except 𝐸∗ then for each solution 
towards the equilibrium point 𝐸∗ when 𝑡 ⟶ ∞. Based on the principle of Invariant 
Lasalle equilibrium point 𝐸∗ global asymptotic stability. 

Numerical Simulation Using the Fourth Order Runge-Kutta Method 

Based on the fourth order runge-kutta formula, we get: 

𝑆𝑖+1 = 𝑆𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                            (14) 

𝐸𝑖+1 = 𝐸𝑖 +
ℎ

6
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)                               (15) 

𝐼𝑖+1 = 𝐼𝑖 +
ℎ

6
(𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4)                        (16) 

𝐻𝑖+1 = 𝐻𝑖 +
ℎ

6
(𝑛1 + 2𝑛2 + 2𝑛3 + 𝑛4)                          (17) 

𝐶𝑖+1 = 𝐶𝑖 +
ℎ

6
(𝑜1 + 2𝑜2 + 2𝑜3 + 𝑜4)                            (18) 

𝑅𝑖+1 = 𝑅𝑖 +
ℎ

6
(𝑝1 + 2𝑝2 + 2𝑝3 + 𝑝4)                           (19) 

𝐷𝑖+1 = 𝐷𝑖 +
ℎ

6
(𝑞1 + 2𝑞2 + 2𝑞3 + 𝑞4)                           (20) 
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With the following set values 
Table 3. SEIHCRD Model 1 and 2 Assignment Values 
 1 2 
k 951.1531962433364  951.1265181791969 
l −7.074192404409184 −7.072064874567189 

m −10.15790677056216 −10.15485173523335 
n −27.86872445688786 −27.86042234608118 
o −3.953709363652501 −3.952533386118616 
p −848.5151443955157 −848.5036030018114 
q 4.009256058479258 4.008057590328402 

 
Table 4. SEIHCRD Model 3 and 4 Assignment Values 
 3 4 

k  951.1265180970076 951.0998399513774 

l −7.072065514335547 −7.069938623983692 

m −10.15485265409406 −10.15179853707305 

n −27.86042479973261 −27.85212514114853 

o −3.952533732663641 −3.951358101474093 

p −848.5035989022803 −848.4920534119367 

q 4.008057946796592 4.006859834903832 

 

So that the value in the first iteration is obtained as follows: 
𝑆 =  272008906, 𝐸 =  71788, 𝐼 =  30738, 𝐻 =  70568,𝐶 =  7926, 𝑅 = 39446, 𝐷 =  1604. 
 

 

NUMERICAL EXPERIMENT 

Comparison of Graphs of Solutions I, H and C with Graphs of Original Data 
 

 

Figure 2. Infected Graphics on Model and Original Data 

 

In Figure 2, we can see that there are 2 graphs of infection cases in the spread of COVID-
19 in Indonesia. Where the graph with the blue line is a graph of the original data, while 
the graph with the dotted line in red is the result of a model simulation. Based on the 
results of the 2 graphs, it can be concluded that by using the parameters β = 0.06, δ =
0.14, 𝛼 = 0.95, 𝜔 = 0.485, and 𝜃 = 0.25, the SEIHCRD model can capture the peak of 
infection cases that occur in Indonesia even though an absolute error is obtained. by 28%. 
Where in the model, the peak of infection cases occurred earlier, namely on the 5th day, 
while in the original data it occurred on the 7th day. This is of course a good result, where 
the model can predict earlier when the peak of COVID-19 infection will occur. So that the 
government and all people in Indonesia can make earlier and more mature preparations 



Dynamic Analysis of the Susceptible-Exposed-Infected-Hospitalized-Critical-Recovered-Dead 
(SEIHCRD) 

 
 

Juhari 138 
 
 

to deal with the peak of infection cases. Then based on the parameters used, cases of 
COVID-19 infection in Indonesia can decrease and subside over time, if the contact rate of 
susceptible individuals with infected individuals (𝛽) is low, the rate of transfer of 
individuals in the Exposed class to the Infected class (𝛿) is low, the individual probability 
hospitalization (𝛼) is high, the probability of a COVID-19 patient becoming critical and 
admitted to the Intensive Care Unit (ICU) (𝜃) is low, and the probability of a critical patient 
dying (𝜔) is low. 

 

 
Figure 3. Hospitalized Graph on Model and Original Data 

 

Next, in Figure 3, there are 2 graphs of hospitalization cases in the spread of COVID-19 
in Indonesia. Where the graph with the blue line is a graph of the original data, while the 
graph with the dotted line in red is the result of a model simulation. Based on these 2 
graphs, it can be seen that the graph of the model can approach the graph of the original 
data with an absolute error of 20% if 𝛽 = 0.06, 𝛿 = 0.14, 𝛼 = 0.95, 𝜔 = 0.485, and 𝜃 =
0.25. This means that the number of hospitalized cases due to COVID-19 in Indonesia can 
be reduced and subsided, if the contact rate of susceptible individuals with infected 
individuals (𝛽)  is low, the rate of transfer of individuals in the Exposed class to the 
Infected class (δ)  is low, the probability of infected individuals being hospitalized (𝛼) is 
high, the probability of a COVID-19 patient becoming critical and admitted to the Intensive 
Care Unit (ICU) (𝜃) is low, and the probability of a critical patient dying (𝜔) is low. So, it 
can be concluded that the SEIHCRD model can capture the sloping trend of Hospitalized 
cases in Indonesia, where the peak of cases that occur in the model are the same as those 
that occurred in the original data, namely on the first day, with the number of cases being 
very close around the 10th day to the 30th day.  
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Figure 4. Critical Graph on Model and Original Data 

 

Furthermore, in Figure 4 there are 2 graphs of critical cases in the spread of COVID-19 
in Indonesia. Where the graph with the blue line is the original case data, while the graph 
with the red dotted line is the simulation result of the model. Based on the results of the 
2 graphs, the graph of the model can approach the original data graph with an absolute 
error of 33%, if 𝛽 = 0.06, 𝛿 = 0.14, 𝛼 = 0.95, 𝜔 = 0.485, and 𝜃 = 0.25. That is, the 
number of critical cases can be reduced and further subsided if the contact rate of 
susceptible individuals with infected individuals (𝛽) low, the rate of transfer of 
individuals in the Exposed class to the Infected class (𝛿) is low, the probability of an 
infected individual being hospitalized (𝛼) is high, the probability of a patient being 
hospitalized is high. COVID-19 becomes critical and admission to the Intensive Care Unit 
(ICU) (𝜃) is low, and the probability of critical patients dying (𝜔) is low. So, it can be 
concluded that the SEIHCRD model can capture the sloping trend of Critical cases in 
Indonesia, where the peak cases that occur in the model are the same as those that 
occurred in the original data, namely on the first day, with the number of cases being very 
close in the first 20 days. 

Based on the interpretation of the results in Susceptible, Exposed, and Infected cases 
above, COVID-19 will subside if the contact of vulnerable individuals with infected 
individuals is low, by implementing health protocols properly such as wearing masks, 
maintaining distance and doing vaccines. In addition, the existence of appropriate and fast 
medical treatment also affects the subsidence of COVID-19 cases. 

CONCLUSIONS 

Through the dynamic analysis that has been carried out on the SEIHCRD model, the 
result is that the number of cases will decrease with increasing time, so that the disease 
outbreak will end. Then, based on stability analysis at the equilibrium point, it is found 
that the disease-free equilibrium point is locally asymptotically stable, and the endemic 
equilibrium point is unstable. Furthermore, based on the results of numerical simulations 
using the Fourth Order Runge-Kutta method, the value obtained in the first iteration is 
𝛽 = 0.06, 𝛿 = 0.14, 𝛼 = 0.95, 𝜔 = 0.485, 𝜃 = 0.25, namely 𝑆 =  272008906, 𝐸 = 71788, 𝐼 

=  30738,𝐻 =  70568, 𝐶 =  7926, 𝑅 = 3.9446, 𝐷 =  1.604. 
Then based on the solution graph obtained from the SEIHCRD model, it can be seen 

that by using 𝛽 = 0.06, 𝛿 = 0.14, 𝛼 = 0.95, 𝜔 = 0.485, 𝜃 = 0.25 and other parameters 
according to Table 2, the solution graph in cases of Infected, Hospitalized, and Critical can 
catch the sloping trend from the original data in Indonesia. Where the number of cases 
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will decrease and subside over time, if the following conditions are met: the rate of contact 
of susceptible individuals with infected individuals (𝛽) is low, the rate of movement of 
individuals in the Exposed class to the Infected class (𝛿) is low, the probability of infected 
individuals being treated hospitalization (𝛼) is high, the probability of a COVID-19 patient 
becoming critical and admitted to the Intensive Care Unit (ICU) (𝜃) is low and the 
probability of a critical patient dying (𝜔) is low. Then, the SEIHCRD model can describe 
the results of the solution graph in the exposed case well. Where the number of people 
exposed to it will also decrease along with the reduction in existing infection cases. While 
the solution graphs in the Susceptible, Recovered, and Dead cases cannot be described 
properly through the SEIHCRD model. 

So based on the dynamic analysis that has been carried out, COVID-19 will subside if 
the contact of vulnerable individuals with infected individuals is low, by implementing 
health protocols properly such as wearing masks, maintaining distance, and doing 
vaccines. In addition, the existence of appropriate and fast medical treatment also affects 
the easing of covid-19 cases. 
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