JALUR MENUJU BERPIKIR FORMAL DALAM
MATEMATIKA

Abdussakir
Jurusan Matematika UIN Maliki Malang

Abstrak: David Tall menyatakan bahwa terdapat tiga dunia berpikir matematika, yaitu
dunia perwujudan, simbolis, dan formal. Pembelajaran matematika di sekolah menengah
lebih menekankan pada dunia perwujudan dan simbolis, sedangkan di perguruan tinggi
lebih menekankan pada dunia berpikir formal. Perubahan pola pembelajaran ini
mengakibatkan terjadinya transisi berpikir pada mahasiswa matematika di tahun pertama
perguruan tinggi. Untuk sampai pada dunia berpikir formal, hasil penelitian Pinto (1998)
dan Weber (2003) menunjukkan terdapat tiga jalur yang dapat ditempuh mahasiswa, yaitu
jalur alami, formal, dan prosedural. Tulisan ini mencoba menganalisis adanya kemungkinan
jalur lain yang dapat ditempuh mahasiswa menuju berpikir formal.

Kata Kunci: dunia berpikir, perwujudan, simbolis, formal, jalur.

Pendahuluan

Sebagian besar mahasiswa matematika
di tahun pertama mengalami perubahan
dalam proses berpikir sebagai akibat transisi
dari matematika sekolah ke pembuktian
formal dalam matematika murni di
universitas. Matematika sekolah dapat
dipandang sebagai kombinasi dari
representasi visual, termasuk geometri dan
grafik, bersama-sama dengan perhitungan
dan manipulasi simbolis. Matematika murni
di universitas bergeser menuju kerangka
formal sistem aksiomatik dan bukti
matematik.

Transisi dalam berpikir dapat
dirumuskan dalam kerangka tiga
dunia matematika, yaitu
(1) dunia perwujudan-konseptual,
berdasarkan persepsi dan refleksi pada sifat-
sifat objek, pada awalnya terlihat dan
dirasakan dalam dunia nyata tapi kemudian
dibayangkan dalam pikiran,
(2) dunia simbolis-proceptual, yang tumbuh
keluar dari dunia perwujudan melalui
tindakan (seperti menghitung) dan
disimbolkan sebagai konsep masuk akal
(seperti angka) yang berfungsi sebagai
proses untuk berbuat dan konsep untuk
berpikir (prosep), dan
(3) dunia formal-aksiomatik, dari kerangka
teoritis definisi konsep dan bukti
matematika, yang membalik urutan
konstruksi makna dari definisi yang
didasarkan pada objek dikenal menuju
konsep formal berdasarkan pada set-teoritis

Setiap “dunia” mempunyai urutan
pengembangan sendiri dan bentuk-bentuk
bukti sendiri yang dapat dipadukan untuk
menghasilkan berbagai macam cara berpikir
secara matematis (Tall, 2008a:5, Tall dan
Mejia-Ramos, 2006:5). Dalam dunia
perwujudan, mahasiswa mulai dengan
percobaan fisik untuk menemukan
kecocokan antar benda, deskripsi verbal
menjadi definisi dan digunakan untuk
mendukung konstruksi visual terhadap bukti
verbal dan membangun teori dari definisi
dan bukti. Dalam dunia simbolik, argumen
dimulai dari perhitungan numerik yang
spesifik dan berkembang menjadi bukti
manipulasi simbolik. Dalam dunia formal,
bentuk bukti yang diinginkan adalah deduksi
formal, seperti teorema nilai tengah
dibuktikan dengan aksioma kelengkapan
(Tall dan Mejia-Ramos, 2006:5).

Beberapa penelitian mengenai transisi
menuju berpikir formal sudah dilakukan.
Ihasil penelitian Hong dkk (2009)
menunjukkan bahwa guru matematika lebih
cenderung pada dunia simbolis sedangkan
dosen lebih cenderung pada dunia formal.
Guru lebih cenderung pada gaya prosedural
sedangkan dosen lebih cenderung pada gaya
formal.

David Tall (2008b:14-15) Menyatakan

“These transitions occur throughout the curriculum. Those that involve unhelpful met-befores include:

(a) From counting to the whole number concept
(b) From whole numbers to fractions
(c) From whole numbers to signed numbers
(d) From arithmetic to algebra
(e) From powers to fractional and negative powers
(f) From finite arithmetic to the limit concept
(g) From description to deductive definition

(h) At many other transitions, such as teaching the function concept in stages (linear, quadratic, trigonometric, logarithm, exponential, etc) builds limitations at each stage that stunt long-term growth.

Research in many of these areas still needs to be done, so I invite you to do research into the effects of met-befores in transitions in the mathematical curriculum.”

Pernyataan David Tall ini menjelaskan bahwa penelitian tentang dampak met-before dalam transisi berpikir juga sangat perlu dilakukan.

Berdasarkan uraian di atas, maka beberapa pertanyaan yang dapat dimunculkan adalah adakah kemungkinan jalur lain selain jalur natural, formal, dan procedural serta bagaimana peran met-before pada saat seseorang menemui suatu jalur tertentu.

Set-Before dan Met-Before

David Tall (2008a) menggunakan istilah set-before untuk merujuk kepada struktur mental manusia yang dibawa sejak lahir, yang mungkin memerlukan sedikit waktu untuk matang saat otak manusia membuat koneksi pada awal kehidupan. Sebagai contoh, struktur visual otak memiliki sistem built-in untuk mengidentifikasi warna dan corak, untuk melihat perubahan dalam corak, mengidentifikasi sisi, mengkoordinasikan sisi untuk melihat benda-benda dan melacak gerakan mereka. Jadi anak lahir dengan sistem biologis untuk mengenali jumlah benda-benda (satu, dua, atau mungkin tiga) yang memberikan set-before untuk konsep “duaan” sebelum anak belajar menghitung.

Lebih lanjut, Tall (2008a) menyatakan ada tiga set-before mendasar yang menyebabkan manusia berpikir secara matematik dengan cara tertentu. Ketiganya adalah:

1. pengenalan pola, persamaan dan perbedaan;
2. pengulangan rangkaian tindakan sampai menjadi otomatis.
3. bahasa untuk menggambarkan dan memperbaiki cara kita berpikir tentang sesuatu;

Meskipun pengenalan dan pengulangan untuk berlatih kebiasaan-kebiasaan juga ditemukan pada spesies lain, kekuatan bahasa, dan penggunaan simbol-simbol yang terkait, memungkinkan manusia untuk fokus pada ide-ide penting, untuk menamai mereka dan berbicara tentang mereka untuk memperbaiki makna. Pengenalan pola adalah fasilitas penting untuk matematika, termasuk pola dalam bentuk dan bilangan.

Pengulangan yang menjadi otomatis sangat penting untuk belajar prosedur. Namun, ada tingkat yang lebih tinggi yang tidak hanya melibatkan kemampuan untuk melakukan prosedur, tetapi juga untuk berpikir tentang hal ini sebagai suatu entitas. Dalam hal ini, simbol-simbol beroperasi secara dual, yakni sebagai proses dan konsep (prosep) yang memungkinkan manusia untuk berpikir fleksibel (Gray & Tall, 1994).

Tiga Dunia Matematika

David Tall (2008a) selanjutnya menggambarkan cara berpikir ini ke dalam tiga dunia matematika yang berkembang dalam pengalaman duniai dengan cara yang cukup berbeda. Tiga dunia matematika ini sebagai berikut.

1. Dunia perwujudan-konseptual, berdasarkan persepsi dan rekreasi pada sifat-sifat objek, pada awalnya terlihat dan dirasakan dalam dunia nyata tapi kemudian dibayangkan dalam pikiran;

2. Dunia simbolis-proceptual yang tumbuh keluar dari dunia perwujudan melalui tindakan (seperti menghitung) dan disimbolkan sebagai konsep masuk akal (seperti angka) yang berfungsi sebagai proses untuk berbuat dan konsep untuk berpikir (prosep);

3. Dunia formal-aksiomatik (berdasarkan definisi formal dan bukti), yang membalik urutan konstruksi makna dari definisi yang didasarkan pada objek dikenal menuju konsep formal berdasarkan pada set-teoritik definisi.

Perwujudan konseptual tidak hanya mengacu pada klaim yang lebih luas dari Lakoff (1987) bahwa semua pemikiran adalah perwujudan, tapi lebih khusus untuk representasi perceptual sesuatu. Secara konseptual, kita dapat mewujudkan figur geometris, seperti segitiga yang terdiri dari tiga segmen garis lurus; kita membayangkan segitiga seperti itu dan menjadikan suatu segitiga khusus yang bertindak sebagai prototipe untuk mewakili seluruh kelas segitiga. Kita "melihat" gambaran suatu grafik tertentu yang mewakili suatu fungsi spesifik atau generik.

Proceptual simbolis mengacu pada penggunaan simbol-simbol yang muncul
dari skema aksi, seperti menghitung, yang menjadi konsep-konsep, seperti bilangan (Gray & Tall, 1994). Suatu simbol seperti 3 + 2 atau \(\sqrt{b^2 - 4ac}\) mewakili proses yang harus dilakukan sekaligus konsep yang dihasilkan oleh proses tersebut.

Aksiomatik formal mengacau pada formal Hilbert yang membawa kita melampaui operasi formal Piaget. Perbedaan utama dari perwujudan dan simbolis matematika dasar matematika adalah bahwa dalam matematika dasar, definisi muncul dari pengalaman dengan benda-benda yang sifatnya dijabarkan dan kemudian digunakan sebagai definisi. Dalam matematika formal, seperti ditulis dalam publikasi matematika, presentasi resmi mulai dari set-teori definisi dan menyimpulkan properti lainnya menggunakan bukti formal.

Kemudian transisi ke dunia aksiomatik formal didasarkan pada pengalaman perwujudan dan simbolis ini untuk merumuskan definisi formal dan untuk membuktikan teorema dengan menggunakan bukti matematis. Bukti formal yang tertulis adalah tahap akhir berpikir matematika. Hal ini didasarkan pada pengalaman teorema apa yang layak untuk membuktikan dan bagaimana mungkin pembuktian dilakukan, sering kali berkembang secara implicit dalam perwujudan dan pengalaman simbolik.

Teori-teori formal yang didasarkan pada aksioama sering mengarah pada struktur teorema, yang mengungkapkan bahwa sistem aksiomatik (seperti ruang vektor) mempunyai perwujudan yang lebih rumit dan simbolis yang terkait -misalnya ruang vektor berdimensi hingga adalah sistem koordinat dimensi-n. Dengan cara ini, kerangka teoreti menjadi lingkaran penuh, berkembang dari perwujudan dan simbolis ke formal, kembali lagi ke bentuk yang lebih canggih dari perwujudan dan simbolis yang, pada gilirannya, memberikan cara-cara baru pada matematika yang lebih rumit.

Dualitas Simbol: Proses dan Konsep

Ausubel dkk (1968) membedakan antara belajar bermakna dan belajar hapaian. Belajar yang menghasilkan skema pengetahuan yang kaya akan saling

SEMNAS MIPA 2010

MAT - 56

Aspek prosedural matematika terfokus pada manipulasi rutin objek yang diwakili baik oleh benda konkret, kata-kata lisan, simbol tertulis, atau gambaran mental. Relatif mudah untuk melihat apakah prosedur tersebut dilakukan secara memadai, dan kinerja dalam tugas-tugas serupa sering diambil sebagai ukuran pencapaian dalam keterampilan ini. Pengetahuan konseptual di sisi lain lebih sulit untuk dinilai. Ini adalah pengetahuan yang kaya dalam hubungan (Gray & Tall, 1994:2).

<table>
<thead>
<tr>
<th>Simbol</th>
<th>Proses</th>
<th>Konsep</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Kurangi 3, 3</td>
<td>Negatif 3</td>
</tr>
<tr>
<td>½</td>
<td>Pembagian</td>
<td>Pecahan</td>
</tr>
<tr>
<td>3 + 2x</td>
<td>Evaluasi</td>
<td>Expresi</td>
</tr>
<tr>
<td>v = s/t</td>
<td>Rasio</td>
<td>Kecepatan</td>
</tr>
<tr>
<td>sin A =</td>
<td>Rasio</td>
<td>Fungsi</td>
</tr>
<tr>
<td>sisi</td>
<td>trigonometri</td>
<td>trigonometri</td>
</tr>
<tr>
<td>depan/sisi</td>
<td>miring</td>
<td></td>
</tr>
<tr>
<td>y = f(x)</td>
<td>Pemasangan</td>
<td>Fungsi</td>
</tr>
<tr>
<td>dy/dx</td>
<td>Diferensiasi</td>
<td>Turunan</td>
</tr>
<tr>
<td>∫ f(x) dx</td>
<td>Integrasi</td>
<td>Integral</td>
</tr>
</tbody>
</table>

Perkembangan umum dalam matematika dimulai dengan mendapatkan pengalaman dari suatu proses, pertama sebagai prosedur yang spesifik, mungkin kemudian dengan lebih banyak fleksibilitas dalam cara-cara alternatif yang lebih efektif atau dibatasi, dan akhirnya dipahami sebagai satu kesatuan. Simbol yang pertama kali membangkitkan suatu proses menjadi dilihat juga sebagai konsep yang dihasilkan. Penggunaan simbol sebagai poros antara proses dan konsep disebut procep. Ini memberikan kekuatan yang besar yang memungkinkan individu untuk melakukan matematika (sebagai proses) dan untuk berpikir tentang hal itu (sebagai suatu konsep) (Tall, 1996:2-3).

Jalur Menuju Berpikir Formal

Ketika berhadapan dengan ide-ide matematika baru, individu bentinkad dalam berbagai cara. Dalam aritmetika, siswa yang berhasil sudah memiliki struktur fleksibel yang saling mendukung penggunaan symbolis baik sebagai proses untuk mendapatkan hasil dan konsep untuk dipikirkan. Siswa yang tidak berhasil lebih menfokuskan pada ketepatan melakukan algoritma dan jarang sukses dengan masalah rutin. Saut perkembangan mereka terus berlanjut dalam matematika, perbedaan mulai berbeda bahkan lebih mencolok. Dalam menghadapi ide-ide baru, beberapa
siswa memiliki sedikit struktur kognitif untuk dikembangkan dan cenderung untuk mundur lebih jauh pada belajar hafalan. Beberapa siswa yang memiliki kekayaan pertumbuhan struktur kognitif mengembangkan pendekatan pribadi yang berbeda-beda.

Apa yang terjadi pada siswa alami dan formal ketika mereka menghadapi definisi dan deduksi pada matematika lanjut? Siswa alami harus menggunakan pengetahuan yang dimilikinya dan berusaha menempatkan definisi sesuai fungsinya. Ini memerlukan sejumlah besar refleksi dan reorganisasi pengetahuan yang memuat banyak kelemahan. Sesungguhnya "pelajar alami" yang belum memahami peran definisi sebagai formalisasi konsep baru dan mendeduksi sifat-sifatnya, benar-benar "mengetahui" banyak sifat dan dibingungkan oleh seluruh masalah. Namun, yang lainnya bisa sukses dan ditandai dengan kemampuan memberikan arti definisi berdasarkan kekayaan pengalaman mereka. Di sisi lain, siswa formal adalah mereka yang berusaha untuk menggunakan definisi verbal sesuai fungsinya dan menggunakanya untuk mengekstrak makna. Sekali lagi, ada yang berhasil dan beberapa gagal (Tall, 1997:11-12).

Berangkat dari hasil penelitian Pinto, pertanyaan yang dapat diajukan untuk diteliti lebih lanjut adalah mengapa mahasiswa memilih jalur alami atau jalur formal. Pemilihan jalur oleh mahasiswa ini dapat ditinjau dari met-before mahasiswa. Pinto tidak memberikan penjelasan mengenai met-before mahasiswa terutama jika dikesalah dengan metode pembelajaran yang dilakukan dosen untuk materi yang diteliti.

formal dan 3 prosedural (untuk soal limit). Perkuliahan materi fungsi dilakukan dengan gaya logiko-struktural dan materi limit barisan dengan gaya procedural.

David Tall (2008a) menggunakan istilah perwujudan untuk perwujudan-konseptual, simbolis untuk simbolis-proseptual, dan formal untuk formal-aksiomatik. Penggunaan istilah ini dilakukan untuk menyederhanakan istilah ketika terjadi penggabungan antara dua dunia, misalnya formal dan simbolis, sehingga dapat disebut simbolis formal bukan simbolis-proseptual formal-aksiomatik. Penyederhanaan ini memberikan kemungkinan adanya penggabungan dua dunia atau lebih yang pada akhirnya dapat memberikan kemungkinan adanya penggabungan dua jalur atau lebih pada transisi berpikir mahasiswa.

Pinto (1998:302-303) menyatakan bahwa

"From the analysis of data collected, and also on basis of our own experience learning mathematics, it is more likely that an individual builds mathematical knowledge constantly combining the two identified strategies of learning. It seems to be important to follow the development of students who present such a variation to the routes of learning which are already identified. In addition, there might be other strategies used by the learners when building their mathematical knowledge, which are worth to be known and understood."

Gambar 1. Perkembangan Kognitif melalui Tiga Dunia Matematika (David Tall, 2008a)

Berdasarkan Gambar 1, maka penulis dapat merinci bahwa terdapat minimal 4 (empat) jalur menuju pembuktian formal, (1) jalur melalui dunia perwujudan menuju pembuktian formal, (2) jalur melalui dunia simbolik menuju pembuktian formal, (3) jalur dari dunia perwujudan dan simbolik, dan akhirnya menuju pembuktian formal, dan (4) jalur dari dunia formal menuju pembuktian formal. Pinto (1998) menyebut jalur (1), (2), dan (3) dengan jalur natural, dan jalur (4) dengan jalur formal.

Kompresi jalur (1), (2), dan (3) menjadi satu jalur masih perlu penghalusan. Jalur (1) dan jalur (2) tentunya akan melewati aktivitas mental yang sangat berbeda. Jalur (1) membangun bukti formal melalui manipulasi atau tindakan fisik seperti bermain dengan bentuk, menempatkan mereka dalam koleksi, menunjuk dan menghitung, membagi, dan mengukur sedangkan jalur (2) membangun bukti formal melalui manipulasi simbol. Dengan demikian, penulis merasa masih diperlukan penghalusan dalam pengkategorian jalur natural.
Penutup

Transisi berpikir dari matematika sekolah ke matematika formal di perguruan tinggi masih menyisakan banyak pertanyaan jika dikaitkan dengan jalur yang dilalui mahasiswa dari dunia perwujudan dan simbolis menuju dunia formal. Penelitian lebih lanjut masih dapat dilakukan untuk menjawab kemungkinan adanya jalur lain selain jalur alami, formal, dan procedural. Selain itu, dalam menempuh suatu jalur, penelitian tentang proses berpikir mahasiswa masih perlu dilakukan untuk melihat peran met-before. Apakah met-before berperan positif atau justru berperan negatif.

Referensi

Tall, D.O. 1997. *From School to University: the Transition from Elementary to Advanced*
Mathematics Thinking. Dipresentasikan pada the Australasian Bridging Conference in Mathematics di Auckland University, New Zealand, 13 Juli 1997.

