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Abstract. This study discusses the dynamic analysis, the Hopf 

bifurcation, and numerical simulations. The mathematical model of the 

anti-tumor immune response consists of three compartments namely 

Immature T Lymphocytes (L1), Mature T Lymphocytes (L2) and Tumor 

Cells (T). This research was conducted to represent the behavior between 

immune cells and tumor cells in the body with five γ conditions. Where γ 
is the intrinsic growth rate of mature T lymphocytes. This study produces 

R0 > 1 in conditions 1 to 4 while in condition 5 produces R0 < 1. The 

disease-free equilibrium point is stable only in condition 5, while the 

endemic equilibrium point is stable only in conditions 2 and 4. Hopf 

bifurcation occurs at the endemic equilibrium point. Numerical simulation 

graph in condition 1 shows that tumor cells will increase uncontrollably. In 

condition 2 the graph show that the endemic equilibrium point for large 

tumors is stable. In condition 3 the graph show that there will be a 

bifurcation from the endemic equilibrium point by the disturbance of the 

parameter value γ. In condition 4 the graph show the small tumor endemic 

equilibrium point is stable. Finally, in condition 5, the graph show a stable 

disease-free equilibrium point. 

1. INTRODUCTION 

Health is one of the most important things in supporting human activities. Charles- Edward 

Amory Winslow, a public health expert in the United States, stated that public health is 

the science and art of preventing disease, extending life span and improving health 

status through organizing efforts of the general public [1]. At present public health is very 

disturbed by diseases that are starting to occur a lot, one of which is tumor disease. 

A tumor is an abnormal growth of a group of cells in the body. Tumors originate from a 

disturbance that occurs in the control of growth regulation of normal cells during the DNA 

mutation process, resulting in excessive and uncoordinated proliferation (division) and 

apoptosis (cell death) significantly decreased [7]. In short, tumor is a pathological disorder 

of cell growth characterized by excessive and uncontrolled cell proliferation, which can be 

solid or filled with fluid [10]. In medical language, tumors are known as neoplasia. 

Neoplasia is a condition where cells in tissues proliferate abnormally and are invasive [9]. In 

general, body cells have two main tasks, namely carrying out their functional activities and 
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multiplying by dividing. However, in the case of tumor cells, almost all of the cell's energy 

is used solely for proliferating activities [7]. Tumors are divided into two major groups, 

namely there are benign tumors (clear) and there are malignant tumors (malignant) or 

called cancer [3]. 

In our body there is already an immune system that plays a role in dealing with various 

diseases that attack the body. One of the immune systems that has an important role in the 

body is lymphocytes, because of their influence on the immune response, such as infectious 

microorganisms and other foreign bodies [8]. Lymphocytes are an important component of 

the immune response and originate from the hemopoietic stem. Common lymphoid stem 

cells undergo differentiation and proliferation to become B cells, which mediate humoral or 

antibody-mediated immunity, and T cells (processed in the thymus), which mediate cellular 

immunity [5]. T lymphocytes have two growth stages, namely young T lymphocytes and 

mature T lymphocytes. Young T lymphocytes are cells that have not found their specific 

antigen, most of which originate from bone marrow stem cells. Meanwhile, mature T 

lymphocytes are cells that have recognized their specific antigen, which will then 

proliferate and differentiate into one of several subsets of effector T lymphocytes [2]. 

Efforts to understand and study tumor disease can be done by constructing problems 

using mathematical modeling. Mathematical modeling is a system of equations used to 

describe a complex problem being observed [6]. In more detail, mathematical modeling can 

be defined as a field of mathematics that seeks to present and describe physical systems or 

problems in the real world in mathematical statements so that a more precise understanding 

of the problem is obtained. This process of elaborating or representing is referred to as 

modeling or modeling which is a logical thinking process [11]. The problem system 

involving young lymphocytes, mature lymphocytes, and tumors is very complex at the 

microscopic to macroscopic level. 

The formulated model represents the intended complexity so that tumor immune 

dynamics can be studied. Models that have been successfully formed can be analyzed 

further by performing dynamic analysis. 

Dynamic Analysis is the observation of object activity by providing the behavior of 

complex dynamical systems, usually by using differential equations or different equations to 

be studied or studied in detail. Dynamic behavior analysis is carried out to determine 

whether a mathematical model is valid or not. The stability of the mathematical model can be 

done by analyzing the equilibrium point, then by calculating the eigenvalues of the 

mathematical model equation, the type of stability will be known [12]. Dynamic analysis is 

usually used to analyze models of a disease, so that the development of the disease can be 

observed. 

There are several previous studies that discuss tumor immune dynamics. Bell (1973) 

applied the classical predator-prey interaction system to describe the response of effector 

cells to tumor cell growth. Kuznetsov et al (1994) considered tumor cell penetration by 

effector cells and presented a mathematical model of the Cytotoxic T lymphocyte (CTL) 

cell response to immunogenic tumor growth. Pillis et al (2000) applied a mathematical model 

to investigate the mechanism of interaction between tumor cells and various immune 

effector cells, and applied numerical computations to discuss the treatment effect of 

different therapy regimens. Liu et al (2012) developed a mathematical model of tumor cells 

eliciting an immune response proposed by delisi and Rescigno (1977), to investigate the 

dynamics of the interaction of tumors and the immune system. Liu and Ruan made a more 

realistic model assumption by requiring lymphocytes to go through two stages of 

development, namely immature lymphocytes and mature lymphocytes, and claimed that 

only lymphocytes in the second stage, namely mature lymphocytes, were effective in 

killing tumor cells. 

In this discussion, research will be carried out following the ideas from the modeling 
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provided by Liu and Ruan, but the difference is that this study prefers to build a simple 

but reasonable mathematical model to describe some of the phenomena observed clinically 

according to the model provided by Liuyong Pang, et al. Furthermore, with the model 

provided by Liuyong Pang, et al, a dynamic analysis will be carried out to find the stability 

of the equilibrium point, then a bifurcation analysis will be carried out, and a numerical 

simulation will be carried out to describe the stability of the balance and the existence of a 

stable periodic solution using the ode45 method. 

This will allow results to reflect clinically observed phenomena, and understand the key 

factors influencing the outcome of the antitumor response as clearly as possible. 

2. METHOD 

2.1. Research Stages 

1. Perform a dynamic analysis of the mathematical model of the anti-tumor immune 

response according to the model equation given in the article Liuyong Pang, Sanhong 

Liu, Xinan Zhang, Tianhai Tian (2019). 

a. Determine the disease-free equilibrium point. At this stage the mathematical model 

of the anti-tumor immune response is in a state of equilibrium, meaning that there 

is no rate of disease spread in the body. 

b. Determining the endemic equilibrium point. At this stage, the mathematical model 

of the anti-tumor immune response in conditions of disease in the body. 

c. Determining the basic reproduction number in a mathematical model of the anti-

tumor immune response 

d. Analyzing the stability of the disease-free equilibrium point. Stability analysis is 

carried out by looking at the eigenvalues 

e. Analyzing the stability of the endemic equilibrium point. Stability analysis is 

carried out by looking at the eigenvalues 

2. Perform a Hopf bifurcation analysis 

a. Determine the parameter value for the Hopf bifurcation, namely the parameter value 

at the eigenvalue of the purely imaginary equilibrium point. 

b. Calculate the transversal condition to be more certain that the Hopf bifurcation 

occurs at the internal equilibrium point. 

3. Numerical simulation 

Completion of the mathematical model of the anti-tumor immune response was 

carried out using ode45 with the help of MATLAB software. 

3. Results and Discussion 

3.1 Dynamic Analysis 

Based on the mathematical model of the anti-tumor immune response according to the 

model written by Liuyong Pang, Sanhong Liu, Xinan Zhang, Tianhai Tian (2019) in the 

journal entitled Mathematical Modeling and Dynamic Analysis of Anti-Tumor Immune 

Response, namely 

                                                 
𝑑𝐿1

𝑑𝑡
= −𝜆1 (𝐿1 −

𝜆0

𝜆1
𝐿0) +

𝑎1𝑇𝐿2

𝜂+𝑇
                                           (1) 

                                                  
𝑑𝐿2

𝑑𝑡
= 𝜆1𝐿1 − 𝑎3𝐿2                                                               (2) 
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𝑑𝑇

𝑑𝑡
= 𝜆2𝑇 − 𝑎2𝑇𝐿2                                                               (3) 

Next, we will look for the equilibrium point or fixed point of tumor disease in this 

case. The equilibrium point is obtained when equations (1) to (3) satisfy 
𝑑𝐿1

𝑑𝑡
= 0,

𝑑𝐿2

𝑑𝑡
=

0,
𝑑𝑇

𝑑𝑡
= 0. However, to simplify the work, equations (1) to (3) will be simplified by 

substituting 𝐿1 −
𝜆0

𝜆1
𝐿0 =

𝑎1

𝑎2
𝑥, 𝐿2 =

𝜆1

𝑎2
𝑦, 𝑇 = 𝜂𝑧 and  𝑡 =

1

𝜆1
𝜏. So we have a simple 

system, namely 

                                             
𝑑𝑥

𝑑𝜏
= −𝑥 +

𝑦𝑧

1+𝑧
                                                                             (4) 

                                                   
𝑑𝑦

𝑑𝜏
= 𝑎𝑥 − 𝛽𝑦 + 𝛾                                                                       (5) 

                                                   
𝑑𝑧

𝑑𝜏
= 𝛿𝑧 − 𝑧𝑦                                                                                (6)  

3.2 Disease Free Equilibrium Point 

The disease-free equilibrium point in tumors states that the equilibrium state is obtained in 

the absence of infection. In other words, there are no tumor cells in the body, so we can 

assume a value of 𝑧 = 0. Disease-free equilibrium can be expressed by 𝐸0 = (𝑥∗, 𝑦∗, 𝑧∗). 
By doing the calculations for equations (4) to (6), the disease-free equilibrium point of the 

anti-tumor immune response model is obtained 

𝐸0 = (𝑥0, 𝑦0 , 𝑧0) = (0,
𝛾

𝛽
, 0)  

3.3 Endemic Equilibrium Point 

Endemic equilibrium points in tumor disease can be obtained when class z≠0. When the z 

value is not equal to zero, it means that there are tumor cells in the human body. Endemic 

equilibrium points can be expressed by 𝐸1 = (𝑥∗, 𝑦∗, 𝑧∗). By doing the calculations for 

equations (4) to (6), the endemic equilibrium point of the anti-tumor immune response 

model is obtained 

𝐸1 = (𝑥∗, 𝑦∗, 𝑧∗) = (
𝛽𝛿−𝛾

𝑎
, 𝛿,

𝛽𝛿−𝛾

𝛾+𝛼𝛿−𝛽𝛿
)  

3.4 Basic Reproduction Number 

The basic reproduction number is a threshold condition for determining whether a 

population is endemic or free from disease. 

 The basic reproduction number will be found using the next generation matrix. It is 

known that the infected compartment in the system of equations (4) to (6) is z. So that the 

basic reproduction number (𝑅0) obtained from the anti-tumor immune response model is 

                                                           𝑅0 =
𝛿𝛽

𝛾
                                                                 (7) 

Based on the parameter values in this study, the basic reproduction numbers from the 

system of equations (4) to (6) are obtained for each condition, which can be seen in the 

following table. 
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Table 1. 𝑅0 Value of Mathematical Model of Anti-Tumor Immune Response 

No Condition 𝑹𝟎 Value Information 

1 When γ < (β − α)δ 3.00 𝑅0 >1 

2 When (β − α)δ < γ < 𝛾1
∗ 1.71 𝑅0 >1 

3 When 𝛾1
∗< γ < 𝛾2

∗ 1.50 𝑅0 >1 

4 When 𝛾2
∗ < γ < βδ 1.20 𝑅0 >1 

5 When γ > βδ 0.97 𝑅0 <1 
 

From the table above it can be seen that for conditions 1 to condition 4 the value of 𝑅0 
>1, this means that there is disease in the body and it will be endemic.  

So for conditions 1 to 4, the endemic equilibrium point is stable. Meanwhile, for 

condition 5, the value of 𝑅0 <1, means that the disease is not present in the body. So for 

condition 5, the disease- free equilibrium point is stable. 

3.5 Stability of the Disease-Free Equilibrium Point 

Analysis of the stability of the equilibrium point is carried out based on the eigenvalues 

obtained from the Jacobi matrix using the linearization method around the equilibrium 

point. 

The jacobi matrix 𝐸0 from the system of equations (4) to (6) is 

𝐽(𝐸0) =

[
 
 
 −1 0

𝛾

𝛽

𝛼 −𝛽 0

0 0 𝛿 −
𝛾

𝛽
 ]
 
 
 
  

The characteristic equation of (𝐸0) is 

                                   𝑓(𝜆) = (−1 − 𝜆)(−𝛽 − 𝜆) (𝛿 −
𝛾

𝛽
− 𝜆)                                 (8) 

So that the eigen values are obtained, namely 
𝜆1 = −1 

𝜆2 = −𝛽 

𝜆3 = −
𝛾 − 𝛽𝛿

𝛽
 

If the parameter values used in this research are substituted into the eigenvalue equation 

obtained, then the eigenvalues are obtained. 
 

Table 2. Eigenvalues of the Disease-Free Equilibrium Point 

No Condition 

Eigen Value 

𝝀𝟏 𝝀𝟐 𝝀𝟑 

1 When γ < (β − α)δ −1 < 0 −0.6 < 0 6.67 > 0 

2 When (β − α)δ < γ < 𝛾1
∗ −1 < 0 −0.6 < 0 4.17 > 0 

3 When 𝛾1
∗ < γ < 𝛾2

∗ −1 < 0 −0.6 < 0 3.33 > 0 

4 When 𝛾2
∗< γ < βδ −1 < 0 −0.6 < 0 1.67 > 0 

5 When γ > βδ −1 < 0 −0.6 < 0 −0.33 < 0 

Based on the table above, it is known that in conditions 1 to condition 4, 𝜆1, 𝜆2 < 0 dan 

𝜆3 > 0are obtained. While in condition 5 obtained 𝜆1, 𝜆2, 𝜆3 < 0. So that the stability of the 
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disease-free equilibrium point in the anti-tumor immune response model in conditions 1 to 

4 is unstable while in condition 5 is stable. 

3.6 Stability of Endemic Equilibrium Points  

Analysis of the stability of the equilibrium point was carried out based on the eigenvalues 

obtained from the Jacobi matrix using the linearization method around the equilibrium 

point. 

The Jacobi matrix 𝐸1 from the system of equations (4) to (6) is 

𝐽(𝐸1) =

[
 
 
 
 −1

𝛽𝛿−𝛾

𝛼𝛿

𝛿

(1+
𝛽𝛿−𝛾

𝛾+𝛼𝛿−𝛽𝛿
)
2

𝛼 −𝛽 0

0 (
𝛽𝛿−𝛾

𝛾+𝛼𝛿−𝛽𝛿
) 𝛿 −

𝛾

𝛽
 ]

 
 
 
 

  

The characteristic equation of (𝐸1) is 

                                             (𝜆) = 𝑘0𝜆3 + 𝑘1𝜆2 + 𝑘2 𝜆 + 𝑘3                                                (9)  
with 

𝑘0 = 1  

𝑘1 = 1 + 𝛽  

𝑘2 =
𝛾

𝛿
  

𝑘3 =
(𝛽𝛿−𝛾)(𝛾+𝛼𝛿−𝛽𝛿)

𝛼𝛿
  

The root value of the characteristic equation above can be analyzed for stability using the 

Routh Hurwitz criteria if it meets the conditions 

𝐷1 = 𝑘1 > 0, 𝐷2 = 𝑘1𝑘2 − 𝑘0𝑘3 > 0, 𝐷3 = 𝑘3𝐷2 > 0 or 𝐷1, 𝐷2, 𝐷3 > 0 

If the parameter values used in this study are entered into 𝐷1, 𝐷2, and 𝐷3, the 

resulting values are as follows: 
 
 

Table 3. Stability of the Endemic Equilibrium Point According to the Routh Hurwitz Criteria 

No Condition 
Routh Hurwitz Criteria 

𝑫𝟏 𝑫𝟏 𝑫𝟏 

1 When γ < (β − α)δ 1.6 > 0 1.65 > 0 −2.20 < 0 

2 When (β − α)δ < γ <𝛾1
∗ 1.6 > 0 0.14 > 0 0.05 > 0 

3 When 𝛾1
∗< γ < 𝛾2

∗ 1.6 > 0 −0.02 < 0 −0.01 < 0 

4 When 𝛾2
∗ < γ < βδ 1.6 > 0 0.13 > 0 0.08 > 0 

5 When γ > βδ 1.6 > 0 1.20 > 0 −0.25 < 0 

 

Based on the calculation results using the Routh Hurwitz criteria in table (3) above. It is 

known that the endemic equilibrium point is stable in condition 2 and condition 4 because 

the values 𝐷1, 𝐷2, 𝐷3 > 0, which means that condition 1 and condition 4 meet the 

requirements of the Routh Hurwitz criteria. Meanwhile, during condition 1, condition 3 and 

condition 5, the endemic equilibrium point is unstable because there is a D value that is less 

than zero. 

Next, by substituting the parameter values in each case at the endemic equilibrium point, 

the eigenvalues are obtained 
 

Table 4. Eigenvalues of Endemic Equilibrium Points 

No Condition Eigen Value 

1 
 

When γ < (β − α)δ 

𝜆1 = −1.16 + 0.72𝐼 
𝜆2 = −1.16 − 0.72𝐼 
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𝜆3 = 0.72 

2 
 

When (β − α)δ < γ < 𝛾1
∗ 

𝜆1 = −0.03 + 0.52𝐼 
𝜆2 = −0.03 − 0.52𝐼 

𝜆3 = −1.55 

3 When 𝛾1
∗< γ < 𝛾2

∗ 

𝜆1 = 0.004 + 0.64𝐼 
𝜆2 = 0.004 − 0.64𝐼 

𝜆3 = −1.61 

4 
 

When 𝛾2
∗< γ < βδ 

𝜆1 = −0.02 + 0.65𝐼 
𝜆2 = −0.02 − 0.65𝐼 

𝜆3 = −1.55 

5 
 

When γ > βδ 

𝜆1 = −0.91 + 0.43𝐼 
𝜆2 = −0.91 − 0.43𝐼 

𝜆3 = 0.21 
 

 

Based on the eigenvalues in table (4) above, it is known that in condition 1 there is a 

value of 𝜆3 > 0, then the type of stability at the endemic equilibrium point is unstable. In 

condition 2, because the values 𝜆1,2 = 𝑥 ± 𝑦𝑖 with 𝑘 < 0 and 𝜆3 < 0, the type of stability at 

the endemic equilibrium point is stable. 

In condition 3, because the value 𝜆1,2 = 𝑥 ± 𝑦𝑖 with 𝑘 > 0 and 𝜆3 < 0, the type of 

stability at the endemic equilibrium point is unstable. In condition 4, because the values 𝜆1,2 

= 𝑥 ± 𝑦𝑖 with 𝑘 < 0 and 𝜆3 < 0, the type of stability at the endemic equilibrium point is 

stable. In condition 5 there is a value of 𝜆3 > 0, so the type of stability at the endemic 

equilibrium point is unstable. Overall it can be concluded that in condition 2 and condition 

4 the type of stability at the endemic equilibrium point is stable, while in condition 1, 

condition 3 and condition 5 the type of stability at the endemic equilibrium point is 

unstable. 

3.7 Bifurcation Analysis  

Based on the Routh Hurwitz criterion, it is known that all roots of equation (9) are negative 

or have a negative real part if and only if the determinant of all Routh Hurwitz matrices is 

positive, in other words 𝑘1𝑘2 − 𝑘3 > 0. If otherwise 𝑘1𝑘2 − 𝑘3 < 0 then the endemic 

equilibrium point is unstable, whereas if 𝑘1𝑘2 − 𝑘3 = 0 it cannot be determined. However, 

equation (9) always has at least one negative real root whatever the sign of 𝑘1𝑘2 − 𝑘3 . 

We assume 𝑘1𝑘2 − 𝑘3 = 0 or (𝛾) = 0, then it is clear that (𝐸1) has one negative 

eigenvalue 𝜆1 = −𝑘1 and two pure imaginary eigenvalues 𝜆2,3 = ±𝜔𝑖 (dimana 𝜔 = √𝑘2 > 
0), which shows that the system of equations (4) to (6) can experience a Hopf bifurcation 

around the equilibrium point 𝐸1. We will cite useful lemmas in analyzing the Hopf 

bifurcation. 

Lemma 1: 

Let Ω ∈ ℝ3 be an open set containing Ο(𝑥1, 𝑥2, 𝑥3) and let 𝑆 ⊆ ℝ be an open set with 

0 ∈ 𝑆. Let 𝑓: Ω × 𝑆 → ℝ3 be an analytical function such that (0, 𝜌) = 0 for every 𝜌 ∈ 𝑆. 

Assume that the variational matrix 𝐷𝑓(0, 𝜌) of 𝑓 has one real eigenvalue 𝛾(𝜌) and two 

conjugate imaginary eigenvalues 𝛼(𝜌) ± 𝑖𝛽(𝜌) with 𝛾(0) < 0, 𝛼(0) = 0, 𝛽(0) > 0. 

Next, suppose that the eigenvalues cross the imaginary axis with a non-zero speed, 

namely 
𝑑𝑎(0)

𝑑𝑝
≠ 0. So the differential system follows 

�̇� = 𝑓(𝑋, 𝑝) 

Experiencing a Hopf bifurcation near the equilibrium point Ο at 𝜌 = 0 
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We choose the intrinsic growth rate 𝛾 as the perturbation parameter. We know that 

𝑘1𝑘2 − 𝑘3 = 0 or 𝑓(𝛾) = 0, has two positive roots which are denoted by 𝛾1,2
∗  satisfies that 

(𝑘1𝑘2 − 𝑘)|ρ = 0 = 0. We also need to determine the sign of the real part of  
𝑑𝜆

𝑑𝜌
 at 𝜌 = 0 

when the above equation is valid. Differentiating equation (9) with respect to 𝜌, we have   

                        3𝜆2 𝑑𝜆

𝑑𝜌
+ 2𝐴1𝜆

𝑑𝜆

𝑑𝜌
+

1

𝛿
𝜆 + 𝐴2

𝑑𝜆

𝑑𝜌
+

−(2𝛾−2𝛽𝛿+𝛼𝛿)

𝛼𝛿
= 0                                   (10) 

 

which leads to 

                                                    
𝑑𝜆

𝑑𝜌
= −

𝛼𝜆−(2𝛾−2𝛽+𝛼𝛿)

𝛼𝛿(3𝜆2+2𝐴1𝜆+𝐴2)
                                                        (11) 

Therefore  

𝑉𝑐 = 𝑠𝑖𝑔𝑛 {−𝑅𝑒 (
𝑑𝜆

dρ
|ρ = 0)}  

𝑉𝑐 = 𝑠𝑖𝑔𝑛 {−𝑅𝑒 (
αω𝑖−(2γ−2βδ+αδ)

αδ(−3A2+2𝐴1𝜔𝑖+𝐴2)
|γ = γ1,2

∗ )}  

𝑉𝑐 = 𝑠𝑖𝑔𝑛 {−𝑅𝑒 (
αω𝑖−(2γ−2βδ+αδ)

−A2+𝐴1𝜔𝑖
|γ = γ1,2

∗ )}  

𝑉𝑐 = 𝑠𝑖𝑔𝑛{−[2γ + α(1 + β) + αδ − 2βδ]|γ = γ1,2
∗ }   

= 𝑠𝑖𝑔𝑛 {−
d𝑓(γ)

dγ
|γ = γ1,2

∗ }  

= −1  

It can be concluded that when 𝛾 = 𝛾1
∗
 or 𝛾 = 𝛾2

∗
 the system of equations (4) to 

(6) experiences a non-degenerate Hopf bifurcation at the endemic equilibrium point. 

4. Numerical Simulation 

Next, a numerical simulation will be carried out from the mathematical model equation of 

the anti-tumor immune response using the ODE45 method with the help of the MATLAB 

application, with the initial values used 𝑥 = 4, 𝑦 = 10, 𝑧 = 1.5 and using the equation 

parameter values contained in table [5] , so that a comparison of several conditions will be 

obtained. In this study, there were five γ treatments in each condition. 
 

Table 5. Parameters and Values of the Mathematical Model of Anti-Tumor Immune Response 

No Parameter Value Unit 

1 𝛼 0.3 /day 

2 𝛽 0.6 /day 

3 𝛿 10 /day 

4 𝛾1
∗ 3.88 /day 

5 𝛾2
∗ 4.64 /day 

4.1 Numerical Simulation of Models When Value γ=2 

Based on the parameter values used in this research, a graph is obtained for the first condition, 

namely when 𝛾 < (𝛽 − 𝛼) and the parameter value 𝛾 = 2 is taken as follows  
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Fig. 1. Simulation of the System of Equations (4) to (6) when 𝛾 < (𝛽 − 𝛼) by taking 𝛾 = 2, and initial 

values (4,10,1.5) 

From the picture above we can conclude that, when the normal flow rate of immune cells 

𝛾 is less than the threshold value (𝛽 − 𝛼), then tumor cells will increase uncontrollably. 

This indicates that tumor development is no longer controlled by the immune system. 

4.2 Numerical Simulation of Models When Value 𝜸 = 𝟑. 𝟓 

Based on the parameter values used in this research, a graph is obtained for the second 

condition, namely when (𝛽 − 𝛼) < 𝛾 < 𝛾1
∗ and the parameter value 𝛾 = 3.5 is taken 

as follows 

 
Fig. 2. Simulation of the System of Equations (4) to (6) when (𝛽 − 𝛼) < 𝛾 < 𝛾1

∗ by taking  

𝛾 = 3.5, and initial value (4,10,1.5)  

 From the picture above we can conclude that, when the normal flow rate of immune 

cells 𝛾 between (𝛽 − 𝛼) and 𝛾1
∗ shows a stable endemic equilibrium point, which 

means that the level of tumor cells does not change.  
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4.3 Numerical Simulation of Models When Value 𝜸 = 𝟒 

Based on the parameter values used in this research, a graph is obtained for the second 

condition, namely when 𝛾1
∗ < 𝛾 < 𝛾2

∗ and the parameter value 𝛾 = 4 is taken as 

follow 

Fig. 3. Simulation of the System of Equation (4) to (6) when 𝛾1
∗ < 𝛾 < 𝛾2

∗ by taking 𝛾 = 4, ad initial 

values (4,10,1.5) 

From the picture above we can conclude that, when the normal flow rate of immune cells 

𝛾 is in the interval [𝛾1
∗, 𝛾2

∗], then the limit cycle will experience bifurcation from the  

ndemic equilibrium point by disturbances from parameter values 𝛾 which are close to a 

value of 4.64, which indicates that the periodic orbit of the system of equations (4) to (6)  

occurs at the endemic equilibrium point. 

4.4 Numerical Simulation of Models When Value 𝜸 = 𝟓 

Based on the parameter values used in this study, a graph for the second condition is 

obtained, namely when 𝛾2
∗ < 𝛾 < 𝛽𝛿 and the parameter value 𝛾 = 5 is taken as 

follows 

 
Fig. 4. Simulation of the System of Equations (4) to (6) when 𝛾2

∗ < 𝛾 < 𝛽𝛿 by taking  𝛾 = 5, and 

initial values (4,10,1.5) 
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From the picture above we can conclude that, when the normal flow rate of immune cells 

𝛾 is between 𝛾2
∗ and 𝛽𝛿, it shows that the endemic equilibrium point for small tumors will be 

stable. This means that the level of tumor cells does not change. 

4.5 Numerical Simulation of Models When Value 𝜸 = 𝟔. 𝟐 

Based on the parameter values used in this study, a graph is obtained for the second 

condition, namely when 𝛾 > 𝛽𝛿 and the parameter value 𝛾 = 6.2 is taken as follows 

 
Fig. 5. Simulation of the System of Equations (4) to (6) when 𝛾 > 𝛽𝛿 by taking 𝛾 = 5, and the 

initial value (4,10,1.5) 

From the picture above we can conclude that, when the normal flow rate of immune cells 

𝛾 is more than the value 𝛽𝛿 then the disease-free equilibrium point 𝐸0 is stable, this means that 

tumors will not exist in the body. 

5. Conclusion 

Based on the objectives and results of the discussion in the previous chapter, the 

following conclusions are obtained: 

1. Based on dynamic analysis of the mathematical model the anti-tumor immune 

response is obtained 

a. The disease-free equilibrium point results in a point 𝐸0 = (𝑥0, 𝑦0, 𝑧0) = (0,
𝛾

𝛽
, 0). 

Based on table (2) it is known that in conditions 1 to condition 4, 𝜆1, 𝜆2 < 0 and 

𝜆3 > 0 are obtained. While in condition 5 obtained 𝜆1, 𝜆2, 𝜆3 < 0. So the stability of 

the disease-free equilibrium point in conditions 1 to 4 is unstable, while in condition 

5 it is stable. 

b. The endemic equilibrium point produces point 𝐸1 = (𝑥∗, 𝑦∗, 𝑧∗) =

(
𝛽𝛿−𝛾

𝛼
, 𝛿,

𝛽𝛿−𝛾

𝛾+𝛼𝛿−𝛽𝛿
). Based on the calculation results with the Routh Hurwitz criteria 

in the table (3) and the eigenvalues in the table (4). It can ben concluded that in 

condition 2 and condition 4 the type of stability at the endemic equilibrium point is 

stable. Whereas in condition 1, condition 3, and condition 5 the type of stability at 

the endemic equilibrium point in unstable. 

 

c. From table (1) it can be seen that for conditions 1 to condition 4, the value 𝑅0 > 1 is 

obtained, so it can be concluded that there is a tumor in the body. Meanwhile, for 

condition 5, the 𝑅0 < 1 is obtained, so it can be concluded that there is no tumor in 

the body. 
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2. The system of equations (4) to (6) of the mathematical model of the anti-tumor immune 

response experiences a non-degenerate Hopf bifurcation at the endemic equilibrium 

point, when 𝛾 = 𝛾1
∗ atau 𝛾 = 𝛾2

∗.. 

3. Based on numerical simulations of the mathematical model of the anti-tumor immune 

response using the ode45 method, it is obtained: 

a. For condition 1, that is when 𝛾 < (𝛽 − 𝛼)𝛿 and the parameter value 𝛾 = 2 is taken, 

and by substituting the parameter values in the table (5), the conclusion based on 

the graphic results is that tumor cells will increase uncontrollably. This indicates 

that tumor development is no longer controlled by the immune system, which is 

consistent with the clinically observed phenomen of immune escape. 

b. For condition 2, namely when (𝛽 − 𝛼)𝛿 < 𝛾 < 𝛾1
∗ and the parameter value 𝛾 = 3.5 

is taken, and by substituting the parameter values in the table (5), a conclusion is 

obtained based on the graphic results, namely that it shows a stable endemic 

equilibrium point, which means that the level of tumor cells does not change. 

c. For condition 3, that is when 𝛾1
∗ < 𝛾 < 𝛾2

∗ and the parameter value 𝛾 = 4 is taken, 

and by substituting the parameter values in the table (5), a conclusion is obtained 

based on the graphical results, namely that the boundary cycle will experience a 

bifurcation from the endemic equilibrium point by the disturbance of the value of 

the parameter 𝛾 which is close to the value of 4.64, which indicates that the 

periodic orbit of the system of equations (4) to (6) occurs at the endemic 

equilibrium point. 

d. For conditions 4, namely when 𝛾2
∗ < 𝛾 < 𝛽𝛿 and the parameter value 𝛾 = 5 is 

taken, and by substituting the parameter values in the table (5), a conclusion is 

obtained based on the graphic results, namely that it shows that the endemic 

equilibrium point for small tumors will be stable. This means the level of tumor 

cells has not changed. 

e. For condition 5, namely when 𝛾 > 𝛽𝛿 and the parameter value 𝛾 = 6.2 , is taken, 

and by substituting the parameter values in table (5), a conclusion is obtained based 

on the graphic results, namely that the disease-free equilibrium point is stable, this 

means that the tumor is not in the body. 
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