
Bulletin of Electrical Engineering and Informatics 

Vol. 13, No. 4, August 2024, pp. 2865~2877 

ISSN: 2302-9285, DOI: 10.11591/eei.v13i4.6203      2865  

 

Journal homepage: http://beei.org 

Applying convolutional neural network and Nadam 

optimization in flower classification 
  
  

Qurrotul Aini1, Zulfiandri1, Rezky Firmansyah2, Yunifa Miftachul Arif3  
1Department of Information Systems, Faculty of Science and Technology, UIN Syarif Hidayatullah, Jakarta, Indonesia  

2Information Technology Support Division, Bekasi Municipal Communication and Information Office, Bekasi, Indonesia  
3Department of Informatics Engineering, Faculty of Science and Technology, UIN Maulana Malik Ibrahim, Malang, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Mar 11, 2023 

Revised Nov 16, 2023 

Accepted Jan 11, 2024 

 

 Flowers have a variety of shapes, colors and structures, the images of which 

need to be classified using guided learning techniques. Several studies 

classify flowers using machine learning, but their accuracy performance is 

not good. The thing is, the flowers come in a variety of colors that can 

sometimes look similar to the background. Therefore, this study aims to 

classify flowers using a convolutional neural network (CNN) and measure 

its performance. The method used is mixed methods by collecting existing 

data from previous studies and connecting it with the realities in the field. 

The Kozłowski and Steinbrener models were used, while the image data was 

obtained from the Oxford17 and Oxford102 dataset with 17 and 102 flower 

types, respectively. The results show 60% and 84% accuracy of CNN using 

the scratch and transfer learning approach for the Oxford17 dataset. The 

Oxford102 dataset shows 42% and 64%, respectively, with CNN from 

baseline and transfer learning. 

Keywords: 

Convolutional neural network  

Transfer learning 

ResNet 

Nadam optimization 

Flower classification 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Qurrotul Aini 

Department of Information Systems, Faculty of Science and Technology, UIN Syarif Hidayatullah 

Jakarta, Indonesia 

Email: qurrotul.aini@uinjkt.ac.id 

 

 

1. INTRODUCTION 

Flowers are part of plants that produce seeds and undergo pollination and fertilization to develop 

into a fruit. Many species of flowers have various shapes, colors, and structures usually classified 

traditionally by botanists. However, the classification of faces problems because flowers have different 

colors, sometimes similar to their background, making their identification difficult. 

Machine learning has been widely used for various purposes and needs, such as classifying flowers 

to cut time and ensure high accuracy. Several studies classified flowers using machine learning in a particular 

neural network [1]-[3]. Previous study proposed the classification model of flower images by applying deep 

convolutional neural network (CNN) to extract the features. It also applied image augmentation for better 

performance results. The commonly utilized method known as CNN processes incoming data through a 

number of hidden layers using artificial neural network (ANN) algorithms. One of the often employed deep 

learning algorithms for picture categorization is CNN. The three major layers of a CNN architecture, the 

convolutional layer, the pooling layer, and the fully connected layer, can be built into a variety of other 

topologies.  

The flower images used Oxford17 and Oxford102 datasets divided into the training and test sets by 

0.8 and 0.2, respectively. The performance results were compared with other techniques, such as support 

vector machine (SVM) and multi-layer perceptron (MLP) classifiers. It showed that the accuracy with CNN 

was less than SVM and MLP classifiers [1]. Furthermore, Almogdady et al. [2] introduced a flower 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2865-2877 

2866 

recognition system for the Oxford102 dataset using ANN. The images were applied segmentation to part the 

flower object from the background. Moreover, the chan-vese algorithm was used, while the classification 

process applied back-propagation ANN and achieved an accuracy rate of 81.19%. Another previous study 

was conducted on a 9500 flower images dataset using CNN. The dataset was categorized into four groups 

and then trained into five groups, and the testing was conducted on all the datasets. The different CNN 

architectures were designed and tested to obtain better accuracy. Also, various pooling schemes were 

implemented to improve the classification rates, resulting in a recognition rate of 97.78% [3]. Another study 

on the modeling process used two approaches with the CNN model architecture and the transfer learning 

method with ResNet. The results showed that the transfer learning approach has the best performance [4]. 

The Nesterov-accelerated adaptive moment estimation (Nadam) algorithm is used to achieve optimal training 

results. This algorithm saves computational resources and performs better than other deep learning 

optimization algorithms [5].  

Supervised learning techniques are needed to classify the types of flowers from all inputs using 

machine learning. To achieve better performance with the Oxford17 and Oxford102 datasets, a new model 

for the classification of flowers is proposed. First, data preprocessing is done by gathering, labeling, resizing 

the pixels of images, and augmenting the image from the entire training image. Second, build the CNN model 

from scratch and transfer learning ResNet. Third, optimize the training process, which requires a loss 

evaluation based on data categories using Nadam. Fourth, build testing interface of the model based on 

Android application to obtain the metric performance of flowers. The CNN and Nadam optimization have the 

following advantages: i) the training data is in the form of categories; therefore, the loss evaluation is carried 

out based on data categories and ii) Nadam optimization is more efficient, effective, and does not use many 

resources.  

 

 

2. METHOD 

This research is quantitative, which explores a problem and solves it in a factual or characteristic 

manner in certain populations or fields factually and carefully. The research framwork is shown in Figure 1, 

which started with providing data, then data preprocessing, designing CNN architecture, CNN model 

implementation, and testing to get the accuracy level.  
 

 

 
 

Figure 1. Research framework 

 

 
2.1.  Providing data  

This study uses a mixed method of qualitative research and quantitative research. Qualitative 

research is research by collecting existing data from existing research. This research can also obtain data 

from interviews and direct observation of the object of research. The gathered information will be merged 

into one unit so that a conclusion and more details can be drawn. 

 

2.2.  Preprocessing data 

We can determine which data can be used as a research sample by looking at the data that has been 

gathered. With respect to initial learning and transfer, the sample's accuracy for the Oxford102 dataset is 42% 

and 64%, respectively. 

a. Data cleaning 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Applying convolutional neural network and Nadam optimization in flower classification (Qurrotul Aini) 

2867 

When the information gathered is put together, missing values get filled in, noisy data is smoothed, 

and any inconsistencies are resolved. Data can also be cleaned by separating it into similar-sized pieces and 

then being smoothed. 

b. Data integration 

The vast amount of data that has been gathered yields a variety of justifications and conclusions. At 

this point, the data are coordinated to enhance one another and produce more precise and comprehensive 

data. Figure 2 illustrates the data integration process which using the dynamic link library (DLL) approach. 
 
 

 
 

Figure 2. Data integration process using the DLL approach 

 

 

2.3.  Convolutional neural network architecture design  

CNN is a deep learning method which analyzes incoming picture data, adds weights and biases that 

can be learned to various features of the image, and assists in distinguishing between different objects in the 

image. One common neural network design for data images is CNN, and the design explained in subsection 3.2.  

 

 

3. BENCHMARK DATASET 

3.1.  Dataset  

This study used the 17 category flower dataset known as Oxford17 [6], [7]. The image consisted of 

17 flower plants, including Daffodil, Snowdrop, Lily Valley, Bluebell, Crocus, Tigerlily, Tulip, Fritillary, 

Sunflower, Daisy, Colts Foot, Dandelion, Cowslip, Buttercup, Windflower, and Pansy, each with 80 images. 

This dataset had a total of 1,360 images, shown in Figure 3. The 102 category flower dataset known as 

Oxford102 was also used [8]. It consisted of 102 flower plants, including Pink Primrose, Hard-leaved Pocket 

Orchid, Canterbury Bells, Sweet Pea, English Marigold, Tiger Lily, Moon Orchid, Bird of Paradise, 

Monkshood, Globe Thistle, Snapdragon, Coltsfoot, King Protea, and Spear Thistle, each with 40 to 258 

images. This dataset had a total of 8,189 images. The performance of the proposed method was investigated 

by splitting the entire images into 80% and 20% for training and testing data, respectively. Figure 3(a) 

displays samples of dataset images from Oxford17, while Figure 3(b) displays images from Oxford102. 
  

 

  
(a) (b) 

 

Figure 3. Sample image from dataset; (a) Oxford17 and (b) Oxford102 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2865-2877 

2868 

3.2.  Convolutional neural network architecture design 

This study implemented CNN from scratch and with ResNet50 transfer learning proposed by 

Steinbrener et al. [9], Kozlowski et al. [10]. GoogleNet machine learning model was employed as the basis 

for transfer learning, while the modeling process used Python with Keras library [11]-[13]. The proposed 

model used four convolutional and three fully connected layers Figure 4. The first layer accepts an image 

input with 224×224 pixels and 3 RGB channels. Furthermore, the first convolution process was conducted, 

as shown in Figure 4 point 1. The process involved extracting features from the image with 16 filters, 5×5 

kernel, and padding valid using the rectified linear unit (ReLU) activation function. The pooling process 

was conducted by reducing the image to 2×2 and stride 2×2 using max-pooling to produce an image 50% 

smaller. This layer produced an image with a size of 64×64 pixels. The second layer received 64×64 pixels 

image input, while the convolution process was conducted to extract the features from the image with 32 

filters, 5×5 kernel, and padding valid using the ReLU activation functions. Similarly, this layer used 

pooling with a size of 2×2, stride 2×2, and max pooling. Dropout layers were also used to avoid over-

fitting, as shown in Figure 4 point 2[14], [15]. 

  

 

 
 

Figure 4. Proposed CNN design  

 

 

The third layer in Figure 4 point 3 received 32×32 pixels image input. The convolution process 

extracted features from the image with 64 filters, 5×5 kernel, and valid padding using the ReLU activation 

function. This layer used pooling with a size of 2×2, stride 2×2, and max pooling. The fourth layer in Figure 4 

point 4 received 16×16 pixels image input, while the convolution process extracted features from the image 

with 128 filters, 5×5 kernel, and padding using the ReLU activation function. Similarly, this layer used pooling 

with a size of 2×2, stride 2×2, max pooling, and a dropout layer added. All parameters were then connected as a 

vector on flatten to enter the fully connected layer. Entering the dense layer in Figure 4, point 5, the results were 

reduced to 1024 and 256 outputs. In the last layer, classification was conducted using the softmax function to 

produce the number of classes [16], [17].  

In an approach with the transfer learning method Figure 5, feature extraction used a layer from 

ResNet50 and two fully connected layers. The first process was to load the weight of the previously trained 

model and part of the feature extraction layer without taking the fully connected layer. The fully connected 

layer used the dense layer, reducing the results to 256 outputs. The last layer used the output appropriate to 

the number of categories with softmax as a classification function [18], [19]. 

 

 

 
 

Figure 5. CNN model with ResNet50 transfer learning 

224

224

128
64

32

16
128 64

32 16

3
3

3

3

16

32

64 128

1024

256

Label

Input

Convolution #1
Max Pooling #1 Fully Connected Layer

Convolution #2
Max Pooling #2

Convolution #3
Max Pooling #3

5

5

5

5 5

5

5

5

Convolution #4
Max Pooling #4

1
2

3
4

5

224

Input

ResNet50 Model Fully Connected Layer

256

Label

224

50 Convolutional 
Layer

2 Pooling Layer



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Applying convolutional neural network and Nadam optimization in flower classification (Qurrotul Aini) 

2869 

3.3.  Nadam optimization  

Nadam is an optimization algorithm developed by Kingma and Ba [20]. It is a technique for 

efficient stochastic optimization requiring only a first-order gradient with little memory requirement. This 

method is easy to implement, computationally efficient and has few memory requirements. However, it does 

not fluctuate for diagonal gradient scales and is well suited for large problems with data or parameters. 

Nadam used Nesterov's accelerated gradient (NAG) and maintained Adam's momentum component as an 

advantage. It produced a substitution that increased the convergence speed and the model’s quality [21]. 

Nadam is part of stochastic gradient descent. This algorithm functions in deep learning to update the weight 

and bias values to reduce the resulting loss. The Nadam algorithm in (1) was used in the back-propagation 

process to update the weight and bias on parameter wt+1, where t is the timestep, and wt is the current weight. 

L is the value of the loss function, while the parameter values of the learning rate a and decay β are adjustable 

as needed. Additionally, the average exponential motion of the gradient V and the squared gradient S was 

initiated with 0 [21]. 

 

𝑤𝑡+1 = 𝑤𝑡 −
𝑎

√𝑆̂𝑡+𝜖
(𝛽1𝑉̂𝑡 +

1−𝛽1

1−𝛽1
𝑡 .

𝛿𝐿

𝛿𝑤𝑡
) (1) 

 

Applying Nadam optimization was chosen because it is more efficient and effective and does not use a lot of 

resources. The metrics used in this research are accuracy. The programming code in Python: 
 

model.compile(loss='categorical_crossentropy', 

 optimizer=keras.optimizers.Nadam(), 

 metrics = ['accuracy']) 

  

3.4.  Convolutional neural network model training  

It covers training setup to regulate the training process to obtain the best model efficiently and 

effectively. The training process was conducted by selecting a fit generator to carry out training in parallel 

and ensure efficiency. The use of a fit generator allowed data augmentation on the CPU and GPU training to 

be conducted in parallel in real-time. The training process used a learning rate of 0.0001 with a batch of 32. 

The process consisted of: 

a. Input layer 

The image was converted into a three-dimensional matrix with a length×width×3 RGB channel. The 

RGB value of each pixel was normalized to a range of 0-1 to simplify the computation process by dividing 

each pixel by 255 Figure 6. 

 

 

16 15 12 11 19 23 15 18 10 6 

14 21 12 18 22 17 20 31 15 8 

23 12 18 18 32 16 13 12 7 13 

13 23 33 26 12 27 24 24 23 24 

23 11 20 20 12 21 22 19 25 26 

12 23 10 39 34 28 35 11 23 12 

52 26 17 39 23 12 26 26 4 29 

12 9 21 13 32 7 17 26 22 16 

12 7 17 9 29 19 19 37 19 32 

12 8 27 9 17 9 12 4 17 22 

 

13 11 11 11 11 13 15 18 20 26 

24 20 12 18 23 20 10 11 15 18 

23 19 18 18 18 19 23 12 37 13 

1 21 23 26 29 11 14 24 39 14 

22 31 30 10 31 24 27 19 16 26 

10 12 40 29 39 18 39 11 26 17 

24 26 27 19 28 7 16 26 4 29 

47 39 31 23 13 7 17 26 29 16 

37 17 17 19 19 19 9 37 19 39 

19 28 27 29 7 9 4 4 18 22 

 

16 15 12 11 19 23 15 18 10 6 

14 21 12 18 22 17 20 31 15 8 

23 12 18 18 32 16 13 12 7 13 

13 23 33 26 12 27 24 24 23 24 

23 11 20 20 12 21 22 19 25 26 

12 23 10 39 34 28 35 11 23 12 

52 26 17 39 23 12 26 26 4 29 

12 9 21 13 32 7 17 26 22 16 

12 7 17 9 29 19 19 37 19 32 

12 8 27 9 17 9 12 4 17 22 

 

43 42 42 44 47 50 52 58 43 36 

50 52 58 56 43 42 42 42 54 39 

44 47 50 52 57 55 43 42 37 43 

41 41 43 46 49 51 54 54 39 54 

42 41 40 40 41 44 47 49 36 36 

50 52 40 39 39 38 39 41 36 37 

44 46 47 49 38 37 36 36 54 39 

37 39 41 43 43 47 37 36 39 36 

37 37 37 39 39 39 39 37 39 39 

39 38 37 39 47 49 44 54 58 52 

 

13 11 11 11 11 13 15 18 20 26 

24 20 12 18 23 20 10 11 15 18 

23 19 18 18 18 19 23 12 37 13 

1 21 23 26 29 11 14 24 39 14 

22 31 30 10 31 24 27 19 16 26 

10 12 40 29 39 18 39 11 26 17 

24 26 27 19 28 7 16 26 4 29 

47 39 31 23 13 7 17 26 29 16 

37 17 17 19 19 19 9 37 19 39 

19 28 27 29 7 9 4 4 18 22 

 

43 42 42 44 47 50 52 58 43 36 

50 52 58 56 43 42 42 42 54 39 

44 47 50 52 57 55 43 42 37 43 

41 41 43 46 49 51 54 54 39 54 

42 41 40 40 41 44 47 49 36 36 

50 52 40 39 39 38 39 41 36 37 

44 46 47 49 38 37 36 36 54 39 

37 39 41 43 43 47 37 36 39 36 

37 37 37 39 39 39 39 37 39 39 

39 38 37 39 47 49 44 54 58 52 

 

 
 

Figure 6. Input layer 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2865-2877 

2870 

b. Convolution layer 

The value of the RGB channel in each pixel was processed in this layer, which extracts feature maps 

in the image using filters. For instance, Figure 7 is an image input on the red color channel. These numbers 

represent the value of the red color intensity in the image (0-255). A convolution process with filters was 

conducted to obtain features from the image. The filter was then convoluted with the input data to produce a 

feature map that could detect edges. Also, continuous convolution and pooling processes would form a more 

detailed pattern, as shown in Figure 8. 

 

 

 
 

Figure 7. Input of red channel 

 

 

 
 

Figure 8. Pattern of feature map 

 

 

c. Activation function 

Figure 9(a) shows the results of the activation function in the object area selection, and Figure 9(b) 

shows the results in layers 1 and 2. This research uses the ReLU activation function to determine whether a 

neuron is active in the neural network. 

 

 

 

  
(a) (b) 

 

Figure 9. The results of the activation function; (a) selection of the object area and (b) at 1st and 2nd layer 

 

 

 

43 42 42 44 47 50 52 58 43 36 

50 52 58 56 43 42 42 42 54 39 

44 47 50 52 57 55 43 42 37 43 

41 41 43 46 49 51 54 54 39 54 

42 41 40 40 41 44 47 49 36 36 

50 52 40 39 39 38 39 41 36 37 

44 46 47 49 38 37 36 36 54 39 

37 39 41 43 43 47 37 36 39 36 

37 37 37 39 39 39 39 37 39 39 

39 38 37 39 47 49 44 54 58 52 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Applying convolutional neural network and Nadam optimization in flower classification (Qurrotul Aini) 

2871 

d. Pooling layer 

The image’s spatial size and the number of parameters and calculations in the neural network were 

reduced by independently operating the pooling layer on each feature. This layer received input from the 

feature map results from the convolution process. Max pooling with a size of 2×2 was used with a stride of 2, 

resulting in an image 50% smaller. 

e. Fully connected layer 

It changed the 3-dimensional matrix data at the convolution stage into a one-dimensional vector 

(shown in (2)). The last stage of the fully connected layer was softmax functioning (shown in (3)) to generate 

probabilities from classification predictions called the classification stage. This stage used the value of the 

previous neuron and applied the softmax activation function [22]. Figure 10 illustrates the one of neural 

network in this study. 

 

 

0.6

0.72

0.1

x

y

w=-0.2 b=0.2

w=0.4

w=0.3

0.398

w=-0.1

w=0.3

w=0.25 0.55

 
 

Figure 10. Example of a neural network 

  

 

To get the value on the destination neuron (y) using (2): [11], [17]: 

 

𝑦 = 𝑔(∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑛
𝑖=1 ) (2) 

 

with the neuron value (x) calculated by weight (w) and added with bias (b) and then activated with function 

(𝑔). Hence, the value of y is: 

 

𝑦 = 𝑔(0.6 × (−0.2) + 0.72 × 0.4 + 0.1 × 0.3 + 0.2) =  0.398 

 

𝑦 = 𝑔(0.6 × 0.3 + 0.72 × 0.25 + 0.1 × (−0.1) + 0.2) = 0.55 

 

 𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒
𝑦𝑗

𝑗
 (3) 

 

where the neuron in the final classification layer calculates the probability value (S) of the class (y) by 

dividing it by the total number of exponential values. 

f. Loss function  

The model’s performance was measured using a loss function to determine the difference between 

the prediction and the actual. The softmax results obtained the predictive value, while the actual value was 

obtained from the label index [14], [15]. 

Example: 

Daisy is in the 7th index in Table 1, so only the 7th value is 1, and other classes/types are 0. 

Actual=[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.] 

Predictive=[0.05345823, 0.05345614, 0.05345496, 0.05345551, 0.05354749, 0.05346881, 0.1443803, 

0.05345564, 0.05345527, 0.05348306, 0.05345568, 0.05354218, 0.05345708, 0.05345512, 0.05345495, 

0.05345769, 0.05356189] 

Loss=0.1655677436840361 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2865-2877 

2872 

Table 1. The last neuron in training 
e S Label 

6.2711093e-05 0.05345823 0 0 Bluebell 
2.3693376e-05 0.05345614 1 0 Buttercup 

1.5455488e-06 0.05345496 2 0 Colts Foot 

1.1844796e-05 0.05345551 3 0 Cowslip 
1.7310450e-03 0.05354749 4 0 Crocus 

2.6060341e-04 0.05346881 5 0 Daffodil 

9.9361295e-01 0.1443803 6 1 Daisy 
1.4375035e-05 0.05345564 7 0 Dandelalion 

7.3801125e-06 0.05345564 8 0 Fritillary 

5.2712415e-04 0.05345564 9 0 Iris 
1.4992844e-05 0.05345564 10 0 Lily Valley 

1.6319246e-03 0.05345564 11 0 Pansy 

4.1258110e-05 0.05345564 12 0 Snowdrop 
4.4960607e-06 0.05345564 13 0 Sunflower 

1.4411211e-06 0.05345564 14 0 Tigerlily 

5.2668565e-05 0.05345564 15 0 Tulip 
1.9999850e-03 0.05345564 16 0 Windflower 

 

 

g. Backpropagation 

This process involves updating weights and biases to reduce the overall training loss using the 

stochastic gradient descent method, where Nadam was used in this study. As seen by the following data, 

where the accuracy will have a high value if the loss is low and the loss will decrease with each epoch, the 

better the model and the better the accuracy. 

 

Epoch 1/50 

48/48[=======] - 15s 313ms/step - loss: 1.6959 - acc: 0.4375 - val_loss: 1.8872 - val_acc: 0.4529 

Epoch 2/50 

48/48[=======] - 13s 261ms/step - loss: 1.2639 - acc: 0.5426 - val_loss: 1.1795 - val_acc: 0.5924  
Epoch 3/50 

48/48[=======] - 11s 238ms/step - loss: 1.0954 - acc: 0.5866 - val_loss: 1.1596 - val_acc: 0.6105  
Epoch 4/50 

48/48[=======] - 11s 236ms/step - loss: 1.0841 - acc: 0.5834 - val_loss: 1.0522 - val_acc: 0.6377  
Epoch 5/50 

48/48[=======] - 11s 239ms/step - loss: 1.0078 - acc: 0.6207 - val_loss: 1.0909 - val_acc: 0.6467  
Epoch 6/50 

48/48[=======] - 11s 236ms/step - loss: 0.9148 - acc: 0.6518 - val_loss: 1.0561 - val_acc: 0.6051  
 

3.5.  Performance measurement 

In the last stage, CNN model performance was obtained by measuring the loss and confusion matrix. 

This performance was compared with ANN and SVM, which used the same dataset as previous studies. 

Confusion matrix generated accuracy (4), precision (5), recall (6), and F1 score (7), representing the 

predicted and actual values [23], [24]. The confusion matrix shown in Table 2 represents the true and false 

negative and positive. 

  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
 (6) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (7) 

 

 

Table 2. Confusion matrix 

Actual 
Predicted 

Positive Negative 

Positive True positives (TP) False negatives (FN) 

Negative False positives (FP) True negatives (TN) 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Applying convolutional neural network and Nadam optimization in flower classification (Qurrotul Aini) 

2873 

4. RESULTS AND DISCUSSION 

This section explains the results of the training process of the proposed CNN model from scratch 

and ResNet50 transfer learning. It also discusses the performance value and the comprehensive discussion. 

  

4.1.  Loss of convolutional neural network model 

The training process results show the fluctuation of the loss values in the data tests from 0.7 to 2.7 from 

scratch and 0.05 to 3.4 for the transfer of learning into the Oxford17 dataset. They also show a loss of data train 

between 1.1 to 2.75 from scratch and 0.05 to 3.2 for transfer of learning, as indicated in Figures 11(a) and (b) 

respectively. In Figures 12(a) and (b), the results also indicate the fluctuating loss data test between 1.0 to 4.5 from 

scratch and 0.7 to 7.5 for transfer learning in an Oxford102 dataset, respectively. Loss of data train between 2.0 to 

4.5 from scratch and 0.02 to 3.5 indicates that the loss performance of the Oxford102 dataset is less compared to 

Oxford17. 

 

 

  
(a) (b) 

 

Figure 11. Loss for the Oxford17 dataset with; (a) CNN from scratch and (b) CNN transfer learning 

 

 

  
(a) (b) 

 

Figure 12. Loss for the Oxford102 dataset with; (a) CNN from scratch and (b) CNN transfer learning 

 

  

4.2.  Performance of convolutional neural network model 

On the Oxford17 dataset, the average accuracy value is 0.54 for validation results and 0.65 for 

training outcomes. On the other hand, training with transfer learning from ResNet50 produced training and 

validation accuracy of 0.98 and 0.83 for the Oxford17 dataset. Figures 13(a) and (b) display the CNN model's 

accuracy, respectively. In the meantime, the maximum accuracy on the Oxford102 dataset was 0.58 for 

training results and 0.47 for validation. ResNet50 transfer learning training can yield the best accuracy 

results, with 0.98 in training and 0.6 in validation. The accuracy of the CNN model using the Oxford102 

dataset from scratch and transfer learning is shown in Figures 14(a) and (b), respectively. 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2865-2877 

2874 

  
(a) (b) 

 

Figure 13. The accuracy of the Oxford17 with; (a) CNN from scratch and (b) CNN transfer learning 

 

 

  
(a) (b) 

 

Figure 14. The accuracy of the Oxford102 with; (a) CNN from scratch and (b) CNN transfer learning 
 

 

Performance measurement, besides accuracy, also uses precision, recall, and the F1-score. The 

measurement results show that ResNet50 transfer learning has better performance than the baseline in Table 

3. The Oxford17 dataset shows a 37% higher average on precision, recall, and F1-score values, whereas the 

Oxford102 dataset shows nearly 26% higher values. 
 

 

Table 3. CNN confusion matrix 
 Oxford17 dataset Oxford102 dataset 

Precision Recall F1-score Precision Recall F1-score 

CNN from scratch 0.66 0.60 0.60 0.58 0.54 0.52 

CNN with transfer learning 0.88 0.84 0.83 0.79 0.64 0.64 

 

 

4.3.  Testing result of convolutional neural network model 

Testing of the CNN model is carried out on the android application. The android platform is chosen 

to make it easier to get images because it can directly use. In the application display, the classification 

process is carried out from the model, the results of the three highest classification probability are selected 

and displayed at the bottom of the application (Figure 15(a)). While the setting serves to select the 

classification model to be used, in this study, four models can be used to classify, namely: Oxford17, 

Oxford17 ResNet, Oxford102, and Oxford102 ResNet. In this setting, we can choose where the processing is 

done. There are two choices of CPU and GPU and threads to use. This setting page also has info on the 

classification input media (Figure 15(b)). The performance of the proposed CNN model was determined by 

running the program to test data of 50 images for each model. The data were classified by scanning using a 

smartphone camera on the images on the laptop screen. The result was recorded for each correct prediction 

(shown in Figure 16) to calculate the accuracy of each model, as shown in Table 4. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Applying convolutional neural network and Nadam optimization in flower classification (Qurrotul Aini) 

2875 

  
(a) (b) 

 

Figure 15. The interface design of flower application is android-based, which consist of; (a) classification 

displays and (b) settings display 
 

 

 
 

Figure 16. Testing with true prediction 
 
 

Table 4. The testing results 
 Oxford17 Oxford102 

Prediction Scratch Transfer learning Scratch Transfer learning 

True 30 42 21 32 

False 20 8 29 18 

Accuracy 0.6 0.84 0.42 0.64 

 

 

CNN scratch accuracy Oxford17=  
30

50
= 0.6, transfer learning accuracy=  

42

50
= 0.84 

CNN scratch accuracy Oxford102=  
21

50
= 0.42, CNN transfer learning accuracy =  

32

50
= 0.64  

 

4.5.  Discussion 

Based on the CNN model performance with 119 flowers, accuracy results were obtained in Table 5 

and compared with SVM and ANN. CNN transfer learning method has higher accuracy of 84% than SVM 

[25] and ANN, which have accuracies of 83.52% and 72%, respectively. However, the CNN model from 

scratch cannot outperform ANN and SVM because it is only 60% accurate. The preprocessing data for the 

flower image in the SVM method used the region growing segmentation technique that separates the flower 

object from its background. The CNN model from scratch has lower accuracy than ANN [2], with an 

accuracy of 81.19%. However, it is higher than the SVM model, which obtained an accuracy of 32.4%. For 

Oxford102, the CNN model using transfer learning obtained an accuracy of 64%. ANN used the HSV color 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2865-2877 

2876 

descriptor, gray level co-occurrence matrix (GLCM), and Invariant Moments to separate the flower object 

from its background during data preprocessing. Therefore, the CNN model trained by the transfer learning 

method has an accuracy advantage. Transfer learning produces a model with high accuracy in a short time 

compared to a CNN from scratch with the same epochs. 

 

 

Table 5. Accuracy comparison of CNN, SVM, and ANN 

Dataset 
CNN 

SVM (%) ANN (%) 
Scratch (%) Transfer learning (%) 

Oxford17 60 84 83.52 [25] 72 

Oxford102 42 64 32.4 81.19 [2] 

 

 

5. CONCLUSION 

This study proposed a flower classification model using a CNN and Nadam optimization. It used the 

Oxford17 and Oxford102 datasets with two approaches from scratch and transfer learning. The CNN transfer 

learning model has high accuracy, though the trained model is short by several epochs than the model from 

scratch. Furthermore, the increase in the type of the image during the classification reduced the result's 

accuracy value. The Oxford17 classification showed that 17 flowers have better accuracy of 60% than the 

Oxford102 containing 102 flowers, which is 42% accurate when using the same model. The CNN model’s 

performance for classifying the Oxford17 dataset was 60% and 84% accurate for scratch and transfer 

learning, respectively. The accuracy for the Oxford102 dataset was 42% and 64% from scratch and transfer 

learning, respectively. Previous studies showed that CNN transfer learning and Nadam optimization perform 

better than SVM and ANN on the Oxford17 dataset. Their accuracy performance of 64% does not exceed 

ANN, which is 81.19% on the Oxford102 dataset. Therefore, future studies should investigate the accuracy 

of CNN with other methods, such as deep reinforcement learning, generative adversarial network (GAN), or 

random forest. 

 

  

REFERENCES 
[1] T. Ensari and B. R. Mete, “Flower Classification with Deep CNN and Machine Learning Algorithms,” in 2019 3rd International 

Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara Turkey, Oct. 2019, pp. 1–5. 

[2] H. Almogdady, S. Manaseer, and H. Hiary, “A flower recognition system based on image processing and neural networks," 

International Journal of Scientific & Technology Research, vol. 7, no. 11, pp. 166–173, Nov. 2018. 
[3] M. V. D. Prasad et al., "An efficient classification of flower images with convolutional neural networks," International Journal of 

Engineering & Technology (UAE), vol. 7, no. 1.1, pp. 384–391, 2018, doi: 10.14419/ijet.v7i1.1.9857. 

[4] A. R. Saikia, K. Bora, L. B. Mahanta, and A. K. Das, "Comparative assessment of CNN architectures for classification of breast 
FNAC images," Tissue and Cell, vol. 57, pp. 8–14, Apr. 2019, doi: 10.1016/j.tice.2019.02.001. 

[5] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O. Aigbavboa, "A comparative analysis of gradient descent-based 

optimization algorithms on convolutional neural networks," in 2018 International Conference on Computational Techniques, 
Electronics and Mechanical Systems (CTEMS), Belgaum, India, Jul. 2018, pp. 92–99, doi: 10.1109/CTEMS.2018.8769211.  

[6] M. E. Nilsback and A Zisserman, ''17 Category Flower Dataset,'' VGG, [Online]. Available: 

https://www.robots.ox.ac.uk/~vgg/data/flowers/17/.(accesed: 2020, 1 April). 
[7] M. E. Nilsback and A Zisserman, "A visual vocabulary for flower classification," in Proceeding of the 2006 IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 2006, pp. 1447-1454, doi: 
10.1109/CVPR.2006.42. 

[8] M. E. Nilsback and A Zisserman, ''102 Category Flower Dataset,'' VGG, [Online]. Available: 

https://www.robots.ox.ac.uk/~vgg/data/flowers/102/. (accesed: 2020, 1 April). 

[9] J. Steinbrener, K. Posch, and R. Leitner, "Hyperspectral fruit and vegetable classification using convolutional neural networks," 

Comput. Electron. Agric., vol. 162, pp. 364–372, Jul. 2019, doi: 10.1016/j.compag.2019.04.019.  

[10] M. Kozłowski, P. Górecki, and P. M. Szczypiński, "Varietal classification of barley by convolutional neural networks," Biosyst. 
Eng., vol. 184, pp. 155–165, Aug. 2019, doi: 10.1016/j.biosystemseng.2019.06.012.  

[11] I. Vasilev, D. Slater, G. Spacagna, P. Roelants and V. Zocca, Python Deep Learning: Exploring deep learning techniques and 

neural network architectures with PyTorch, Keras, and TensorFlow. Packt Publishing Ltd, Birmingham, 2019.  
[12] M. Sewak, M. R. Karim, and P. Pujari. Practical convolutional neural networks: implement advanced deep learning models using 

Python. Packt Publishing Ltd, Birmingham, 2018.  

[13] F. Pedregosa et al., “Scikit-learn: machine learning in Python,” Journal of machine Learning research, vol. 12, pp. 2825-2830, 
Nov. 2011. 

[14] W. You, C. Shen, X. Guo, X. Jiang, J. Shi, and Z. Zhu, “A hybrid technique based on convolutional neural network and support 

vector regression for intelligent diagnosis of rotating machinery,” Advances in Mechanical Engineering, vol. 9, no. 6, pp. 1-17, 
Jun. 2017, doi: 10.1177/16878140177041. 

[15] M. Z. Alom et al., "The history began from alexnet: A comprehensive survey on deep learning approaches," arXiv preprint 

arXiv:1803.01164. 2018.  
[16] M. Sarıgül, B. M. Ozyildirim, and M. Avci, "Differential convolutional neural network,” Neural Networks, vol. 116, pp. 279–287, 

Aug. 2019, doi: 10.1016/j.neunet.2019.04.025. 

[17] P. Kim, ''MATLAB Deep Learning,'' With Machine Learning, Neural Networks and Artificial Intelligence, vol. 130, no. 21, p. 

151, 2017, doi: 10.1007/978-1-4842-2845-6.  



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Applying convolutional neural network and Nadam optimization in flower classification (Qurrotul Aini) 

2877 

[18] S. Aneja, N. Aneja, P. E. Abas. A. G. Naim, "Transfer learning for cancer diagnosis in histopathological images," IAES 
International Journal of Artificial Intelligence (IJ-AI), vol. 11, no. 1, pp. 129-136, Mar. 2022, doi: 10.11591/ijai.v11.i1.pp129-

136. 

[19] Z. Widyantoko, T. P. Widowati, Isnaini, P. Trapsiladi, "Expert role in image classification using CNN for hard to identify object: 
distinguishing batik and its imitation," IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 1, pp. 93-100, 

Mar. 2021, doi: 10.11591/ijai.v10.i1.pp93-100. 

[20] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014. 
[21] T. Dozat, “Incorporating nesterov momentum into adam,” in International Conference on Learning Representations (ICLR) 

Workshop, San Juan, Puerto Rico, pp. 1-4, 2016.  

[22] Y. L. He, X. L. Zhang, W. Ao, and J. Z. Huang, “Determining the optimal temperature parameter for Softmax function in 
reinforcement learning,” Applied Soft Computing, vol. 70, pp. 80–85, Sep. 2018, doi: 10.1016/j.asoc.2018.05.012. 

[23] A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,” in Data 

Democracy, 2020, pp. 83–106, doi: 10.1016/B978-0-12-818366-3.00005-8. 
[24] S. S. W. Su and S. L. Kek, “An Improvement of Stochastic Gradient Descent Approach for Mean-Variance Portfolio 

Optimization Problem,” Journal of Mathematics, vol. 2021, pp. 1-10, 2021, doi: 10.1155/2021/8892636. 

[25] A. Albadarneh and A. Ahmad, Automated flower species detection and recognition from digital images, Diss. Princess Sumaya 
University for Technology (Jordan), pp. 1–6, 2016.  

  

  

BIOGRAPHIES OF AUTHORS  

 

 

Qurrotul Aini     holds a Doctor of Electrical Engineering degree from Institut 

Teknologi Sepuluh Nopember, Indonesia in 2018. She is currently an associate professor at 

the Department of Information System in Universitas Islam Negeri Syarif Hidayatullah 

Jakarta Indonesia. Her research interest is in business intelligence, intelligence computation, 

multimedia application, and ad hoc network. She can be contacted at email: 

qurrotul.aini@uinjkt.ac.id. 

  

 

Zulfiandri     is an asisstant professor at Department of Information System in 

Universitas Islam Negeri Syarif Hidayatullah Jakarta Indonesia. His research interests are 

software engineering, data mining, data warehouse, IT infrastructure, and algorithms & data 

structures. He can be contacted at email: zulfiandri@uinjkt.ac.id. 

  

 

Rezky Firmansyah     holds a Bachelor of Computer in Department of Information 

System at Universitas Islam Negeri Syarif Hidayatullah Indonesia. He is currently working as 

an IT Support Engineer at Bekasi Municipal Communication and Information Office, 

Indonesia. His research interest is web development, machine learning, and data analysis. He 

can be contacted at email: rezkyfmh@gmail.com. 

  

 

Yunifa Miftachul Arif     received Master's and Ph.D. degrees from the 

Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember Surabaya, 

Indonesia, in 2010 and 2022. He is a lecturer in Department of Informatics Engineering, 

Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia. His research interest 

includes game technology, blockchain, metaverse, recommender system, and the internet of 

things. He can be contacted at email: yunif4@ti.uin-malang.ac.id. 

 

mailto:rezkyfmh@gmail.com
https://orcid.org/0000-0002-2722-4755
https://scholar.google.com/citations?hl=id&user=sRs85fMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=54974128700
https://www.webofscience.com/wos/author/record/1359878
https://orcid.org/0009-0009-5942-1137
https://scholar.google.com/citations?hl=id&user=r0m7xlMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57421019900
https://orcid.org/0000-0003-0099-2479
https://orcid.org/0000-0002-2183-0762
https://scholar.google.com/citations?hl=id&user=fEbiXoQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57188979784

