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AND CONFIRMATORY ITEM RESPONSE MODEL 
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This study demonstrates the use of the multidimensional item response theory (MIRT) to investigate 
the internal structure of a construct exploratively and confirmatively. Based on data from 657 Islamic 
university students (65% female) spread across Indonesia, MIRT was used to examine the factor structure 
of the items measuring student engagement. The MIRT results supported the multidimensional structure 
of the scale. Most notably, the comparison of the investigated models supported the within-item multidi-
mensional structure in which almost all items fit 3-factor loadings among all measured domains (cogni-
tive, behavioral, and social). Furthermore, vector depictions of the items in a 3-dimensional space are 
offered to give the reader a vivid picture of their multidimensionality. The paper ends with an overview 
of MIRT in scale development and dimensionality assessment to didactically enhance readers’ awareness 
of its usefulness as a psychometric tool. 
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Empirical research on the multidimensionality of student engagement is an essential endeavor 

in psychometrics and higher education. Student engagement has attracted considerable attention due to 

its strong association with academic success, motivation, critical thinking skills, and students’ sense of 

belonging in the educational environment (Salmela‐Aro et al., 2021). Diverse research perspectives re-

inforce it. Yang et al. (2023) highlighted the pivotal role of engagement in mitigating dropout rates and 

fostering academic achievement, especially under remote learning conditions during the pandemic. Siu 

et al. (2023) identified psychological capital and study engagement as mediators in the relationship be-

tween social support and student outcomes, thus underscoring the importance of engagement in academic 

and behavioral performance. Nkomo et al. (2021) explored the nuances of student engagement in digital 

learning environments, stressing its impact on developing critical thinking skills and student satisfaction. 

Complementing these findings, Li and Xue (2023) conducted a meta-analysis revealing promoting and 

hindering student engagement factors, such as the teacher-student relationship and teaching methods, 

affecting students’ learning participation and success in various educational contexts. These collective 

insights highlight the multifaceted nature of engagement, its profound impact on multiple aspects of the 

educational experience, and the importance of a supportive learning environment in fostering effective 

engagement. Consequently, as researchers, educators, and policymakers, understanding the complex na-

ture of student engagement is paramount.  

Traditionally, student engagement has been conceptualized and measured as a unidimensional con-

struct, which ignores the complex interplay of its dimensions. However, recent research has challenged this 

simplistic view, recognizing that engagement is multifaceted. For example, recently, researchers have improved 
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educationalists’ understanding of student engagement as multidimensional (Inman et al., 2020; Wong & 

Liem, 2022; Zhang & McNamara, 2018). Other empirical studies have also proven the multidimensional 

structure of student engagement, consisting of affective, behavioral, and cognitive (Ben-Eliyahu et al., 2018; 

Bond et al., 2020; Groccia, 2018), as well as social dimensions (Fredricks et al., 2019; Rimm-Kaufman et 

al., 2015; Wang et al., 2016; Wang & Hofkens, 2020). Additionally, a synthesis through a scoping review of 

2010-2020 publications on student engagement by Salmela‐Aro et al. (2021) confirmed that student engage-

ment is a multidimensional construct.  

This growing consensus encourages exploration of the multidimensionality of student engagement, 

prompting empirical investigations to reveal the specific dimensions that contribute to the overall student 

engagement experience. While these empirical studies have demonstrated the multidimensional nature of the 

student engagement construct, they have yet to apply the multidimensional item response theory (MIRT) 

method as Carlucci et al. (2023) conducted. Carlucci et al. utilized a sample of 3338 Italians to assess the 

multidimensional nature of anxiety using the state-trait inventory for cognitive and somatic anxiety 

(STICSA). By comparing unidimensional, 2-factor, and bifactor models, the research demonstrated that a 

bifactor model most accurately captured the nuances of state and trait anxiety, underscoring the construct 

multidimensionality. Furthermore, attention to the multidimensionality of student engagement needs to be 

prioritized, because this affects the scoring and the interpretation of scores. 

The score becomes the basis for concluding a test taker on the attribute of concern and is the foun-

dation for estimating candidates’ ability, proficiency level, or latent trait level. Meanwhile, the estimated 

latent attribute of proficiency depends on the measurement model and refers to the interpretation of the score 

influenced by the internal structure of the model chosen. Thus, the model selected affected the validity related 

to the scoring interpretation (AERA et al., 2014). Scores will be useful and produce meaningful information 

if they have good psychometric properties and are valid and reliable. The most important consideration is 

the validity of score interpretation, which is “the degree to which evidence and theory support the interpre-

tations of test scores for proposed uses of tests” (AERA et al., 2014, p. 11). While scores and their meanings 

depend on the structure of the construct (Childs & Oppler, 2000) and ignoring the better model may result 

in misleading conclusions (Lee et al., 2019), this implies that investigating the structure of the construct 

component dimensions is crucial to support the validity of the score interpretations. 

Of the sources of validity evidence, internal structure validity is a prerequisite in developing 

arguments to support the interpretation and use of scores (Rios & Wells, 2014). Meanwhile, test scores 

depend on the internal structure of the instrument. Internal structure validity addresses the extent to which 

the relationships between items and latent dimensions align with theoretical expectations. Various factor 

analysis models are available to investigate an instrument factor structure. In addition to exploratory 

factor analysis (EFA; Watson, 2017), confirmatory factor analysis (CFA) has been widely used as a 

model-based approach to assess the factor structure of an instrument (Mikkonen et al., 2022). Alterna-

tively, item response theory (IRT), which represents a broad class of statistical models, can also be used 

to help conduct item analysis, scale development, and scoring (Embretson, 1996; Embretson & Reise, 

2000; Liu et al., 2018). While at its inception, traditional IRT was limited to using the principle of uni-

dimensionality, that is, only one latent attribute (θ) underlying test takers’ responses, recent advances in 

the field have led to the development of multidimensional IRT models (Reckase, 2009) that can be used 

for multidimensional instruments where the latent attributes are as many as m dimensions (θ1, θ2, …, θm). 

For example, m = 3 in the engagement construct, θ1 = cognitive engagement, θ2 = behavioral engagement, 

and θ3 = social engagement. 
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The classical test theory (CTT) is limited in modeling multidimensional constructs, whereas MIRT 

effectively extends from unidimensional to multidimensional models. MIRT capacity for multidimensional-

ity is evident in its application to complex analytic geometry tests, whereas MIRT surpasses CTT in analyz-

ing a wide range of competencies (Kruglova et al., 2021). Moreover, integrating MIRT with graphical models 

provides a robust measurement of multidimensional traits, outperforming CTT (Y. Chen et al., 2018). The 

clinical assessment further underscores these advantages, while MIRT multidimensional models yield more 

nuanced and accurate representations than CTT (Thomas, 2019). 

The application of MIRT to assess internal factor structure in psychological research needs to be 

more developed. Recognizing this gap, this study aims to demonstrate the utility of MIRT modeling in un-

raveling the complexities of instruments’ factor structures, exemplified by the studies conducted by C.-Y. 

Chen et al. (2018) and Carlucci et al. (2023). Chen and colleagues used MIRT to analyze the ages and stages 

questionnaires (ASQ-3, 3rd ed.), revealing its internal structure as multidimensional rather than unidimen-

sional, encompassing interrelated domains such as fine motor, gross motor, communication, problem-solv-

ing, and personal-social skills. This finding highlights the importance of using MIRT to capture the complex, 

interconnected nature of constructs like child development, which traditional unidimensional approaches 

might oversimplify. 

Similarly, Carlucci et al. (2023) applied MIRT to the state-trait inventory for cognitive and somatic 

anxiety (STICSA), addressing its multidimensional nature that encompasses state and trait anxiety with both 

cognitive and somatic components. Their study found that both bifactor and 2-correlated dimensions models 

fit the STICSA scales well, with the bifactor model showing better-fit indices. However, the multidimen-

sional model provides more precision in estimating latent anxiety states. This underscores the strength of 

MIRT in providing a more accurate and comprehensive assessment of complex psychological constructs. 

Moreover, the authors extended the application of MIRT beyond developmental and anxiety measures to 

student engagement assessment. Student engagement, which can manifest cognitively, behaviorally, socially, 

or as an interaction of these domains, is inherently multidimensional. MIRT-based scores offer a more com-

prehensive understanding of student engagement by capturing its multifaceted nature, allowing educators 

and researchers to tailor interventions more effectively and understand the diverse ways students interact 

with their learning environments. The findings from C.-Y. Chen et al. (2018) and Carlucci et al. (2023) 

collectively reinforce the advantage of MIRT in providing nuanced insights into complex constructs, ensur-

ing a more accurate, reliable, and comprehensive assessment essential in various fields of psychological 

research and education.  

The scope of this empirical research is to provide a comprehensive understanding of the multidi-

mensional nature of student engagement. Its findings will yield valuable insights that can inform educational 

practice, empower students to thrive academically, personally, and socially, and ultimately advance the field 

of psychometrics and higher education research. Moreover this study should inspire further investigation and 

discussion within the field of psychometrics and ultimately deepen the understanding of undergraduate stu-

dent engagement. By exploring the complexity and richness of this construct and using rigorous empirical 

methods, this research aims to empower educators and institutions with insights that can be applied to shape 

enriching and transformative learning experiences for diverse undergraduates. 

In this empirical study, the multidimensionality underlying the construct of undergraduate student 

engagement was comprehensively explored. Using advanced statistical techniques such as full information 

item factor analysis (FIF), this study aims to utilize all available information from the observed data, includ-

ing values that may be missing (Muthén & Muthén, 1998/2017). By using FIF, this research ensures that the 

exploration of the multidimensionality of student engagement is based on the most robust and accurate 
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technique, increasing the score validity and reliability of instruments. A transparent account of the steps 

taken to reveal the multidimensional nature of student engagement (Wong & Liem, 2022) is presented, with 

a particular focus on the utilization of FIF (Lee & Xu, 2003; Zhang et al., 2018) and between-item and within-

item multidimensionality (Hartig et al., 2012; Hartig & Höhler, 2009). 

This paper demonstrates that IRT provides a flexible model-based approach to examining the factor 

structure of instruments used in educational psychology research and offers an alternative approach to CFA 

for the dimensional assessment of psychological instruments. To finalize the reader’s understanding of IRT 

and MIRT, in particular, CFA and MIRT methods are used to examine the dimensionality of the Student 

Engagement Scale, an instrument designed to operationalize student engagement, whether cognitive, behav-

ioral, or social. The following section provides an overview of the main principles of IRT and the details of 

the unidimensional 2-parameter logistic (2-PL) IRT model for dichotomous data and Samejima’s (1997) 

graded response model for categorical items (e.g., Likert scales). Additional aspects of IRT that align with 

the use of the MIRT model are reviewed, including item parameter estimation, ability estimation, and good-

ness of fit. Furthermore, an assessment of factor structure using the MIRT model is presented. 

 

 

Item Response Theory 

 

A participant’s behavior in choosing a particular response to a problem or statement is a function 

that can be explained by two things: the character of the problem (statement) and the character of the par-

ticipant. Participants’ responses to the presented options can be scored dichotomously (0 = false, 1 = true 

or 0 = no, 1 = yes) or polytomously (0 = strongly disagree, 1 = disagree, 2 = neither disagree nor agree, 3 

= agree, 4 = strongly agree). Modeling the interaction between the two characteristics is packaged in a 

nonlinear relationship on the same scale (θ) modeled in a function predicting the probability of giving a 

particular response. 

IRT encompasses a comprehensive statistical framework that aims to capture the likelihood of an 

individual selecting a specific response to an item (Fan & Sun, 2013). In essence, IRT asserts that both item 

and individual attributes play a role in shaping item responses. Further, IRT multidimensionality allows for 

nuanced interpretations of test results, particularly in the social and behavioral sciences (Chung & Houts, 

2020). Its application extends to predictive performance in test responses, where traits of individuals are 

quantified relative to their responses, demonstrating the crucial role of individual differences (Chang et al., 

2022). Advanced algorithms like variational Bayesian inference in IRT highlight how large modern datasets 

can capture detailed behavioral nuances (Wu et al., 2020). Additionally, IRT models account for respondent 

behaviors like overreporting or underreporting, further emphasizing the interaction between individual at-

tributes and item features (Leng et al., 2020). Comprehensive literature on IRT models underscores their 

broad applicability and depth of research in this field (Halpin, 2020). 

The properties of the items, including item discrimination and threshold parameters, hold significant 

relevance. Item discrimination pertains to an item capability to differentiate among individuals along a spec-

trum of underlying traits (e.g., social engagement, cognitive engagement), such as distinguishing between 

students with varying levels of engagement. On the other hand, the item threshold signifies the juncture on 

the continuum of the latent trait at which an individual holds a .50 likelihood of choosing a specific response 

category. In instances involving dichotomously scored items, where responses are either true or false, the 

threshold gauges item difficulty, indicating the ease or difficulty with which respondents answered the item. 

Conversely, for psychological instruments frequently composed of ordered categorical items (e.g., Likert 
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scales), the threshold marks the point on the trait spectrum where an individual would have a .50 probability 

of opting for a particular response category. An individual’s attribute manifests as his/her position on the 

measured trait (e.g., cognitive engagement, behavioral engagement, or social engagement), often referred to 

as proficiency, ability, or theta (denoted as θ).  

IRT possesses several appealing characteristics for examining the psychometric attributes of psy-

chological instruments (Bock & Gibbons, 2021; Hambleton, 2000; Reckase, 2009; Reise et al., 2018). Ini-

tially, IRT item parameter estimates are autonomous and unaffected by samples. Unlike the item discrimi-

nation and difficulty values derived from the classical test theory (Crocker & Algina, 1986), IRT item pa-

rameters remain uninfluenced by the underlying sample. Hence, an IRT model fit will produce consistent 

item parameter values, irrespective of the distribution of the sample (Embretson & Reise, 2000). This robust 

property of item parameters is a fundamental tenet of IRT. It underlies the computation of an individual’s 

likelihood of responding correctly at a given level of ability or trait.  

An individual’s assessment of the measured trait (e.g., behavioral engagement, cognitive engage-

ment) is unrelated to the specific items but any of item. Consequently, once a collection of items has been 

estimated (or calibrated), individual trait values can be ascertained by using the designated subset of items. 

Further, there is no necessity to administer an identical set of items to deduce individual trait estimates. In 

this scenario, a cluster of items can be chosen from the calibrated item pool and presented to individuals to 

ascertain their position on the quantified trait, forming the foundation of computerized adaptive testing.  

IRT calculates measurement errors for each attribute estimate. This stands in contrast to the standard 

error of measurement in classical test theory (CTT), which remains constant across the entire score distribu-

tion (Crocker & Algina, 1986). These constitute three evident advantages of employing IRT for item analysis 

and scoring. As with other statistical methodologies, the assumptions must undergo empirical evaluation to 

steer model selection determinations. These assumptions may only sometimes be relevant in all IRT appli-

cations. Hence, researchers should be familiar with the accessible data and models. 

In this research the 2-parameter logistic (2PL) model (Hambleton et al., 1991) and the graded re-

sponse model (GRM; Samejima, 1997) for didactic purposes are discussed. The 2PL item response theory 

model can be applied to dichotomous data, for example, 0 for no or incorrect and 1 for yes or correct. Mean-

while, the GRM can be applied to items scored polytomously, for example, 0 = strongly disagree, 1 = disa-

gree, 2 = neither disagree nor agree, 3 = agree, and 4 = strongly agree. Understanding the simple unidimen-

sional IRT model is a prerequisite for understanding the MIRT as an extended model (Reckase, 2009). 

The 2PL model describes the probability of an individual choosing Response 1 as: 

 

𝑃(𝑥 =  1|θ)
1

1 + 𝑒𝑎𝑖(θ−𝑏𝑖)
,                                                                                                                                           (1) 

 

where P(x = 1|θ)  represents the probability of choosing Response 1 (correct category or yes category) con-

ditional on the individual’s proficiency or latent trait position, ai is the discrimination parameter, θ represents 

the proficiency trait, bi is the item threshold, and e ∼2.718. The subscript i indicates that each item has a 

unique discrimination and threshold parameter. Thus, the 2PL model is so named because it describes the 

probability of an examinee answering 1 based on two item parameters, that is, item discrimination  and dif-

ficulty (b). Figure 1 (a) visualizes the probability of choosing the correct or incorrect response with a = .90 

and b = ‒1. 
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                       (a) Two categories                                                             (b) Five categories 
 

Figure 1 

Item category response function 

 

 

IRT models can also be applied to items with categorical response options or scored polytomously 

(van der Linden, 2016). Among these are the following: partial credit model (PCM; Masters, 1982), rating scale 

model (RSM; Andrich, 2010), generalized partial credit model (GPCM; Muraki, 1992), graded response model 

(GRM; Samejima, 1997), nominal response model (NRM; Bock, 1997b), nested logit model (NLM; Suh & 

Bolt, 2011), and multiple-categorical response model (MCRM; Thissen et al., 1989). Consulting Penfield’s 

(2014) compact description of the polytomous item response model is suggested. A new, more complete, and 

comprehensive IRT model classification can be found in Kim et al. (2020). Collectively, these models are de-

signed to predict the probability of a participant selecting a particular response category (e.g., strongly disagree, 

disagree, agree, strongly agree) for a statement in an item. For example, a student with high engagement with 

his/her college will have a high probability of responding strongly agree to the item “I am proud of my college.” 

Samejima’s GRM is an IRT model that can be applied to items scored polytomously. Specifically, it estimates 

the probability that individual j selects category k (e.g., agree, strongly agree) for item i:  

 

𝑃𝑘𝑗𝑖
∗

1

1 + 𝑒−𝑎𝑖(θ−𝑏𝑖𝑘)
,                                                                                                                                                 (2) 

 

where 𝑃𝑘𝑗𝑖
∗  is the probability of student j selecting category k or higher on item i, ai is the item discrimination 

parameter (and is the same across all response categories), and bik is the threshold for reaching category k. 

For polytomous items, there are k ‒ 1 thresholds (one less than the number of response categories), meaning 

there are four thresholds (5-1) for a 5-point Likert scale. The four thresholds will cover the point on the scale 

where a student would choose a rating of disagree over strongly disagree, neither disagree nor agree over 

disagree, agree over neither agree nor agree, and strongly agree over agree. The probability of choosing a 

particular response category over choosing a lower response is: 

 

𝑃𝑘𝑛𝑖
∗ =

1

1 + 𝑒−𝑎𝑖(θ−𝑏𝑘−1)
−

1

1 + 𝑒−𝑎𝑖(θ−𝑏𝑘)
.                                                                                                       (3) 

 

In this case, the term of the equation on the right of the minus sign is the probability of choosing the lower 

category (e.g., disagree), and the term on the left is the probability for the other category (e.g., agree). As 
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mentioned, the discrimination parameter 𝑎𝑖 indicates that the model assumes that each category of items has 

the same discriminating power. Figure 1 (b) displays the category response function (CRF) for a polytomous 

item with four threshold parameters. Specifically, it depicts the probability of choosing one of the five pos-

sible response categories based on a given trait level. For this item, the discrimination parameter is .90, and 

the four threshold parameters are ‒1.5, ‒1, 1.5, and 2.5, respectively. As the model specifies, the categorical 

trace lines have the same slope and unique threshold parameters. The hypothetical trace lines in the figure 

can correspond to any item scored polytomously. 

Several approaches were available for calibrating IRT item parameters. Expectation maximization 

(EM) or maximum marginal likelihood with expectation maximization (MML-EM; Bock, 1997b), quasi-

Monte Carlo EM estimation (QMCEM; Jank, 2005), Markov chain Monte Carlo (MCMC; Edwards, 2010; 

Rabe-Hesketh et al., 2002), Metropolis-Hastings Robbins-Monro (MH-RM; Cai, 2010a), and stochastic EM 

(SEM; Nielsen, 2000; Zhang et al., 2018) can all be used as iterative procedures to estimate the item param-

eters. Chalmers (2012) suggested using the QMCEM when the dimensions are three or more. The type of 

estimation approach used to derive item parameter estimates will depend mainly on the statistical software 

package used for the IRT analysis. For example, the IRTPRO programs (Cai et al., 2018) implement the 

MML-EM procedure, while the “mirt” package in the R programming environment implements optional 

EM, QMCEM, MCEM, SEM, or MH-RM (Chalmers, 2012). 

Various approaches were available to provide estimates of individual abilities or traits in IRT. These 

approaches fall under maximum likelihood or Bayesian procedures: the expected a posteriori (EAP), the max-

imum a posteriori (MAP), maximum likelihood (ML), weighted likelihood estimation (WLE), and the expected 

a posteriori for each sum score (EAPsum) (Warm, 1989). MLE seeks to determine the ability estimate, θ, that 

maximizes the likelihood of an individual’s response pattern on a set of statement items. MLE minimum and 

maximum values can range from ‒∞ to +∞, so it is necessary to set a range of values, usually ‒3 to +3. 

Bayesian methodologies encompass techniques such as MAP and EAP (Bock, 1997a). These ap-

proaches leverage a prior distribution of the ability distribution, drawing upon prior knowledge from the group 

of individuals whose scores are underestimated. Typically, scores are assumed to follow a normal distribution 

with a mean of 0 and a standard deviation of 1. Within Bayesian frameworks, a posterior distribution is gener-

ated for each individual, where the likelihood of the observed item response pattern is assessed at various ability 

levels (θ). EAP scores are derived from the posterior distribution mean, whereas MAP scores stem from the 

mode of this distribution, constrained within a score range of ‒3 to +3. Bayesian scores offer several appealing 

qualities over maximum likelihood estimation (such as reduced standard errors and the absence of extreme 

values), rendering them a more enticing choice.  

In Bayesian statistics, estimating a test-taker’s ability starts with a prior belief, updated by test responses 

to form a posterior distribution. This distribution merges the initial belief with the likelihood of the data. Maxi-

mum a posteriori (MAP) estimation pinpoints the ability level with the highest posterior probability. It involves 

adjusting a pretest belief about a student’s ability based on their performance and then identifying the ability level 

where this revised belief peaks. Expectation a posteriori (EAP) estimation, however, accounts for the entire range 

of possible abilities. It calculates the expected ability value across the posterior distribution, effectively averaging 

all abilities, each weighted by probability. MAP concentrates on the most likely ability level, whereas EAP as-

sesses the average of all potential levels, providing a more balanced estimate, particularly when the posterior 

distribution is skewed or ability estimates are uncertain. For foundational knowledge of Bayesian methods, Bergh 

et al. (2021) is recommended. Bock and Gibbons (2021) offer specific insights in the context of IRT. This sum-

mary delineates the differences between MAP and EAP in Bayesian inference within IRT, underscoring MAP 

focus on the most probable ability level and EAP comprehensive evaluation of all abilities.  
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Multidimensional Item Response Theory 

 

The multidimensional item response theory (MIRT) expands the unidimensional IRT model by aim-

ing to elucidate item responses based on an individual’s positioning across multiple latent dimensions 

(Reckase, 2009). In practical research, the primary limitation of unidimensional models is their potential 

inability to accommodate widely used multidimensional measurement instruments adequately. As a result, 

advancements in MIRT and the growing availability of statistical software packages offer a valuable oppor-

tunity for applied researchers to develop an understanding of its application in assessing the psychometric 

performance of their scales. MIRT holds significant relevance, especially considering the intricate nature of 

the psychological constructs being investigated, such as how individuals approach learning, and the intricate 

interplay of personal and environmental factors influencing it. Analogous to other statistical modeling meth-

ods, MIRT contributes by enabling an exploration of the factors that contribute to an individual’s response 

patterns to question items.  

MIRT encompasses a wide-ranging set of probabilistic models developed to characterize an indi-

vidual’s likelihood of responding to an item, utilizing item parameters and latent traits. Specifically, MIRT 

positions an individual within a multidimensional space of latent traits hypothesized to influence item re-

sponses: θj = [θj1, θj2, θj3, …, θjM]’, where M denotes the count of unobserved latent dimensions required to 

model an individual’s probable item responses. Two main categories of MIRT models are recognized: com-

pensatory and noncompensatory (Reckase, 2009). Compensatory models allow a test-taker’s higher posi-

tioning on one latent trait to potentially offset a lower positioning on another dimension, influencing the 

estimated probability of accurately responding to a question item. In contrast, noncompensatory (or partially 

compensatory) models restrict an individual’s position across the multidimensional space to have no bearing 

on the likelihood of answering a question item. Within the existing literature, compensatory MIRT models 

are more frequently utilized. For dichotomous items, the probability of responding affirmatively to an item 

(e.g., correct or yes) can be formulated as: 

 

𝑃(𝑢𝑖 = 1|θ𝑗 , 𝑎𝑖 , 𝑑𝑖) =
𝑒(𝑎𝑖θ𝑗+𝑑𝑖)

1 + 𝑒(𝑎𝑖θ𝑗+𝑑𝑖)
,                                                                                                                (4) 

 

where ai represents the vector of item discrimination parameters (slope), indicating the probability of an-

swering correctly associated with a change in a participant’s position along m dimensions, and di corresponds 

to the item intercept parameter. Notably, the intercept di replaces the item threshold parameter (b) present in 

the unidimensional 2PL model and is not to be interpreted as a threshold (or difficulty level). Interested 

readers may refer to Reckase (2009, pp. 86-91) for a detailed presentation of the parameters of the multidi-

mensional 2PL model. The exponent in Equation (4) can be expressed as:  

 

𝑎𝑖θ𝑗
′ + 𝑑𝑖 = 𝑎𝑖1θ𝑗1 + 𝑎𝑖1θ𝑗1 + ⋯ + 𝑎𝑖𝑚θ𝑗𝑚 + 𝑑𝑖 .                                                                                          (5) 

 

In this context, ai1 denotes the slope or discrimination parameter for item i to a participant’s position j on the 

first latent dimension, θ1, and similarly for other up to m dimensions. Additionally, di represents the intercept. 

The mathematical expression of the MIRT model underscores its significance as a valuable psychometric 

instrument for estimating item and ability parameters across multiple dimensions (m dimensions). 

The multidimensional graded response model (MGRM; Gibbons et al., 2007) can be written as: 
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𝑃(𝑦𝑖𝑗 = 𝑘|θ𝑗) =
1

1 + 𝑒
−(𝑑𝑗(𝑘−1)+𝑎𝑖

′θ𝑗
)

−
1

1 + 𝑒
−(𝑑𝑗𝑘+𝑎𝑖

′θ𝑗
)

.                                                                          (6) 

 

Here, k signifies the response category selected by individual j for item i. Like the unidimensional model, 

the ability estimates are not bounded and can span from negative to positive infinity, although they usually 

lie between ‒3 and +3. The MIRT model parameters are estimated using the same methodology as the uni-

dimensional model, and checks for goodness of fit are grounded in the fit indices reported previously. The 

fundamental distinction between unidimensional IRT and MIRT models lies in the number of dimensions 

utilized to elucidate item responses.  

Various models are available to describe the underlying factor structure of an assessment tool. As 

depicted in Figure 2, four potential factor structures for a 7-item measure are illustrated: a unidimensional model 

(Model A), a simple factor model (Model B), a correlated factor model (Model C) with two or three factors, a 

higher order factor model (Model D), a bifactor model (Model E), and a within-item model (Model F). 

 

Figure 2 

Alternative factor structures of a 7-item measure 

 

 

The unidimensional, or single-factor, model is the most straightforward if all items gauge a single di-

mension. However, in many scenarios, the psychological concept of interest is theorized to be multidimensional. 

Consequently, capturing a multidimensional construct necessitates constructing scales that conceptualize items 

linked to multiple latent dimensions (e.g., cognitive and behavioral or behavioral and social). This theoretical 

framework prompts researchers to employ unrestricted methods like exploratory factor analysis or constrained 
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methods like confirmatory factor analysis to ascertain these subdomains’ distinctiveness, serving modeling 

and score reporting purposes. Distinct subdomains might lead to reporting subscale scores, while strongly 

correlated factors may support utilizing a unified score.  

In establishing the factorial validity of an assessment instrument, the choice of a model holds sig-

nificant weight for researchers. Decisions regarding model selection should be guided by substantive theory 

and existing empirical evidence on the instrument’s psychometric properties. Additionally, it is crucial to 

explore various factor structures to rule out alternative interpretations of the instrument underlying structure. 

This could encompass unidimensional, correlated factor, bifactor, and within-item models. 

Researchers need to recognize and comprehend the commonalities among different statistical mod-

els. Disregarding a more appropriate model during the selection process could lead to erroneous conclusions 

(Lee et al., 2019). For instance, correlated 2- or 3-factor models (as exemplified by Model C, Figure 2) are 

founded on the premise that items measure distinct yet interconnected latent dimensions. In cases where 

factor correlations approach unity, a 1-factor (unidimensional) model might offer a better fit for the data, 

potentially challenging the concept of different latent dimensions. Ultimately, researchers should consider 

the intricacies of the models, grounded in theory and empirical evidence, to choose the one that best aligns 

with the nature of the investigated instrument.  

In contrast, a higher-order model may be more appropriate if a factor hierarchy can explain the 

relationships between factors (see Model D, Figure 2). In recent years, in education (Gibbons & Hedeker, 

1992) and psychology (Gibbons et al., 2007) literature, the bifactor structure has gained increasing attention 

(see Model D, Figure 2; Reise, 2012). A bifactor structure states that the interrelationships among all items 

are explained by a primary dimension with a conceptually grouped subset of items related to a particular 

subdomain. Gibbons et al. (2007) developed a full-item information bifactor model for multilevel response 

data. The fundamental assumptions of this model are that all items correspond to one central dimension and 

one subdomain and that the dimensions are uncorrelated or orthogonal.  

Further, Cai (2010b) proposed a 2-level model that extended the 2-factor model and demonstrated its 

application for modeling complex and longitudinal data structures. Despite the apparent differences between 

the models, the literature shows similarities. Rindskopf (2012) showed the relationship between unidimensional 

models, correlated factors, higher order models, and bifactor models. In IRT literature, Rijmen (2010) showed 

how second order models are equivalent to testlet models, and both are restricted bifactor models. Thus, through 

this comprehensive examination, this research aims to clarify the intricate relationships and applicabilities 

of various factor models in MIRT to student engagement measurement modeling, guided by empirical evi-

dence and theoretical underpinnings. 

 

 

METHODS 

 

Participants  

 

The dataset employed in the study consisted of responses from university students and aimed to evaluate 

student engagement in higher education. A total of 657 undergraduate students responded to the questionnaire; 

427 were female, and the rest were male. Their ages ranged from 18 to 23 years (M = 20, SD = 1.72). The 

participants were from 13 universities under the Ministry of Religious Affairs (MORA) located in the Indonesian 

cities of Aceh, Bandung, Banjarmasin, Makassar, Malang, Medan, Palembang, Pekanbaru, Palangkaraya, 
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Pamekasan, Purwokerto, Salatiga, and Surabaya. Informed consent was obtained by informing the students that 

they were giving consent by completing the online survey and that their participation was voluntary. 

 

 

Measures 

 

The Student Engagement Scale is a 20-item measurement tool for assessing undergraduate student 

engagement. The scale was developed based on a conceptual review of work engagement, with adjustments 

made to fit the context of undergraduate students in higher education. Given the absence of empirical evi-

dence regarding the scale’s internal structure, this instrument emerged as a suitable candidate for dimensional 

assessment. This scale is an extension of Ridho’s (2023) work, implemented in the context of students’ per-

formance in completing their undergraduate studies as “student engagement.” The scale includes five sub-

scales: cognitive engagement, emotional engagement, physical engagement, behavioral engagement, and so-

cial engagement. Each item in the five subscales asks for five graded responses (0 = strongly disagree, 1 = 

disagree, 2 = neither disagree nor agree, 3 = agree, 4 = strongly agree).  

 

 

Data Analysis 

 

The Multidimensional item response theory (MIRT; Reckase, 2009) was used to evaluate the factor 

structure of the instruments in this study. As a first step, descriptive statistics were used for data screening 

purposes. An initial CTT-based item discrimination analysis (rir) was conducted to inform the subsequent 

IRT-based item parameter calibration. Additionally, exploratory factor analysis and principal component 

analysis were employed to validate the multidimensional nature of the engagement construct, following es-

tablished practices (Fan & Sun, 2013; Hambleton et al., 1991). To corroborate these results, in parallel it was 

tested whether a 1-, 2-, or 3-factor model based on a polytomous graded response model (GRM; Gibbons et 

al., 2007; Samejima, 1997), corresponding to the form of response offered (strongly disagree to strongly 

agree), as appropriate. This research tested the proposed models in the next phase to best fit the data. 

Five models were confirmed in this study. Model 1 is a multidimensional simple 3-factor, Model 2 

is a multidimensional correlated 3-factor, Model 3 is a multidimensional 3-bifactor (one primary factor and 

two specific factors), Model 4 is a multidimensional bifactor with one primary factor and three specific fac-

tors, and Model 5 is a within-item 3-factor. Each model forms the basis for evaluating the extent to which 

the factor structure of the instrument is unidimensional, composed of distinct cognitive, behavioral, and so-

cial engagement dimensions, or complex with items related to the primary dimension and domain-specific 

cognitive, behavioral, or social factors, or complex with items related to the whole dimensions. The “mirt” 

package, Version 1.39 (Chalmers, 2012) in R environment (R Core Team, 2022), was used to analyze the 

data modeling from students’ responses to the questionnaire. 

For robust parameter estimation, the QMCEM estimation method was employed within the “mirt” 

package. The model fit was evaluated using various indices: Akaike information criteria (AIC; Akaike, 

1998), Bayesian information criteria (BIC; Schwarz, 1978), M2 (Maydeu-Olivares, 2013), root-mean-square 

error of approximation (RMSEA; Steiger, 1990, 2016; Yin et al., 2023), standardized root-mean-square re-

sidual (SRMR; Pavlov et al., 2021), Tucker-Lewis index (TLI; Cai et al., 2023; Tucker & Lewis, 1973), and 

comparative fit index (CFI; Bentler, 1990; Hu & Bentler, 1999). Consistent with Hu and Bentler’s (1999) 

recommendations, an acceptable model fit was indicated by SRMR ≤  .08, RMSEA ≤  .05, TLI ≥  .90, and 
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CFI ≥  .95. Furthermore, smaller AIC and BIC values, indicative of a better fit, were considered (Huang, 

2017). Additionally, the differences in CFI between a model and its augmented version, reflecting an increase 

in parameters, were also taken into account, as suggested by Cheung and Rensvold (2002). 

 

 

RESULTS 

 

The item-rest correlation, rir, of Item i12 illustrates a deviation given that it has a value of ‒.01, 

indicating a meager, even harmful, discriminating power, which also means that the item is not at all in line 

with the other items in the scale. Therefore, the subsequent analysis did not include Item i12. Next, the 

frequency distribution reported that the item responses had a negatively skewed distribution. Average skew-

ness is ‒.61 with a range of ‒1.69 (Item i08) to ‒.07 (Item i15) (see Table 1). 

 

Table 1 

Item descriptive statistics 

 

Item p1 p2 p3 p4 p5 M SD Min Max Skew Kurt rir 

i01 .03 .09 .21 .40 .28 3.81 1.02 1 5 ‒0.71 ‒0.01 .60 

i02 .02 .07 .18 .45 .28 3.91 0.95 1 5 ‒0.80 0.34 .70 

i03 .01 .06 .22 .48 .23 3.86 0.88 1 5 ‒0.70 0.46 .66 

i04 .03 .05 .15 .37 .39 4.06 1.00 1 5 ‒1.06 0.77 .37 

i05 .03 .06 .30 .40 .21 3.70 0.96 1 5 ‒0.54 0.11 .71 

i06 .03 .08 .29 .39 .21 3.66 1.00 1 5 ‒0.53 ‒0.07 .73 

i07 .03 .07 .27 .42 .22 3.73 0.97 1 5 ‒0.64 0.20 .70 

i08 .01 .01 .09 .29 .59 4.43 0.82 1 5 ‒1.69 3.26 .35 

i09 .03 .07 .36 .37 .17 3.58 0.95 1 5 ‒0.39 0.02 .59 

i10 .04 .06 .25 .36 .29 3.79 1.07 1 5 ‒0.75 0.10 .56 

i11 .02 .07 .39 .39 .13 3.55 0.87 1 5 ‒0.29 0.13 .65 

i13 .02 .06 .34 .40 .18 3.65 0.92 1 5 ‒0.39 0.03 .49 

i14 .01 .07 .31 .45 .16 3.68 0.87 1 5 ‒0.42 0.07 .60 

i15 .04 .21 .46 .25 .04 3.04 0.89 1 5 ‒0.07 ‒0.14 .50 

i16 .03 .14 .50 .27 .06 3.19 0.84 1 5 ‒0.08 0.22 .50 

i17 .02 .05 .23 .48 .22 3.82 0.90 1 5 ‒0.74 0.64 .39 

i18 .03 .09 .33 .42 .12 3.52 0.93 1 5 ‒0.49 0.14 .53 

i19 .00 .03 .20 .54 .22 3.94 0.77 1 5 ‒0.56 0.53 .57 

i20 .03 .06 .28 .46 .18 3.70 0.92 1 5 ‒0.66 0.48 .58 

Note. p1 = strongly disagree proportion response; p2 = disagree proportion response; p3 = neither disa-

gree nor agree proportion response; p4 = agree proportion response; p5 = strongly agree proportion 
response; Skew = Skewness; Kurt = Kutosis; rir = item-rest correlation. 

 

 

Table 1 reports descriptive statistics for the scale items. The average response was neither disagree 

nor agree to agree across the items. An examination of the minimum and maximum values indicates that there 

is a range of restrictions for each item. The item-rest correlation, rir, ranged from .35 (Item i08) to .73 (Item i06) 

with a mean of .57 (SD = 0.11). Cronbach’s alpha coefficients for the scale total scores were .91, .90 for the 

cognitive engagement subscale, .81 for the behavior engagement subscale, and .75 for the social engagement 
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subscale. The item analysis results and Cronbach’s alpha coefficients provided relevant information to guide a 

model-based approach to assessing scale factor structure (e.g., relationships among item sets). 

 

 

Exploratory Model 

 

Exploration was conducted on the response data. As presented in Table 2 and in the Appendix (Table 

1A), the goodness of fit suggests that the data fit the 3-factor model better than the 2- and 1-factor models. It 

is supported by the model fit indices (AIC, BIC, M2, RMSEA, SRMR, TLI, and CFI). The 3-factor model 

produces the smallest AIC, BIC, and M2 indices, RMSEA and SRMR are less than .05, and TLI and CFI are 

more than .90, proving that the internal structure of the engagement instrument is 3-factor multidimensional. 

The significant likelihood ratio test with p < .01 in Table 3 (see also Table 2A in the Appendix) also corrobo-

rates the evidence of the precision of the 3-factor model over its 2- and 1-factor counterparts. Additionally, 

the CFI difference between the 2-factor and 3-factor ΔCFI > .01 indicates that the 2-factor model does not 

explain the data better than the 3-factor model. Therefore, the following confirmation process involved some 

variation of the 3-factor structural model. 

 

Table 2 

Fit comparison of confirmatory factor IRT models 

 

Model AIC BIC M2 df RMSEA SRMR TLI CFI 

Model 1 27466.98 27893.31 385.262 95 .07 .26 .81 .84 

Model 2 26868.87 27308.66 307.749 92 .06 .28 .85 .88 

Model 3 26671.86 27183.46 171.385 76 .04 .04 .92 .95 

Model 4 26647.61 27159.21 183.123 76 .05 .05 .91 .94 

Model 5 26634.93 27231.79 121.055 57 .04 .04 .93 .96 

Note. AIC = Akaike information criteria; BIC = Bayesian information criteria; M2 = M2 statistic; df = 
degrees of freedom; RMSEA = root-mean-square error of approximation; SRMR = standardized root-

mean-square residual; TLI = Tucker-Lewis index; CFI = comparative fit index. 
 

Table 3 

Likelihood ratio test model comparison 

 

Model N Par logLik 2 df p 

Model 1 95 ‒13638.49 ‒ ‒ ‒ 

Model 2 98 ‒13336.43 604.12 3 0 

Model 3 114 ‒13221.93 229.01 16 0 

Model 4 114 ‒13209.81 24.25 0 ‒ 

Model 5 133 ‒13184.47 50.68 19 0 

Note. N Par = number of parameters estimated; logLik = loglikelihood. 

 

 

Table 3A in the Appendix reports the factor loadings of each item of the student engagement instru-

ment across the three models explored, suppressing loadings < .30. In the 1-factor model, factor loadings 

ranged from .39 (Item i08) to .90 (Item i06) with mean .66 and standard deviation 0.16. Some items (e.g., 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 31, No. 2, June 2024 

239-261 

© 2024 Cises 

 

Ridho, A. 
Multidimensionality of engagement 

252 

i08, i09, and i10) have sufficient factor loadings on two dimensions in the 2- and 3-factor models. This 

information shows variance sharing in items with more than one factor load. 

 

 

Confirmatory Model 

 

As explained in the Methods section, five multidimensional models were compared in this study. 

Model 1 is a simple 3-factor model, Model 2 is a correlated 3-factor model, Model 3 is a bifactor model 

with one primary dimension and two specific dimensions, Model 4 is a bifactor model with one primary 

dimension and three specific dimensions, and Model 5 is a within-item multidimensional model where 

three dimensions account for all items composing the student engagement scale. The data fit presented in 

Table 2 shows that Model 3, Model 4, and Model 5 fulfill the absolute data fit criteria (SRMR < .08; 

RMSEA < .05; TLI > .90). All data fit indices (except BIC) informed that Model 5 was the best-fit model 

for the data. The likelihood ratio test in Table 3 also shows that Model 5 fits the data best compared to the 

other models being compared. 

Table 4 reports the factor loadings for each cognitive (F1), emotional (F2), and social (F3) dimen-

sion. The discriminating power parameters corresponding to these dimensions are the discriminating param-

eters of the cognitive (a1), emotional (a2), and social (a3) dimensions. The factor loadings correlated with the 

discriminating power because they can be converted to each other. The higher the factor load, the higher the 

discriminating power. The following parameter, location or easiness (d), is the ease of each response cate-

gory. For example, d1 is the location between strongly disagree and disagree, whereas d4 parameterizes the 

location between agree and strongly agree. The location of each item will generally get smaller (d4 < d3 < d2 

< d1). Alternatively, these parameters can be converted into a multidimensional difficulty parameter 

(MDIFF). The triple discriminating power for each item can be converted into a multidimensional discrimi-

nating parameter (MDISC), as reported in Table 4A in the Appendix. 
 

Table 4 

Standardized within-item factor loading, item discrimination, and item easiness on three dimensions 

 

Item F1 F2 F3 a1 a2 a3 d1 d2 d3 d4 

i01 .48 .57 .15 1.26 1.50 0.39 5.27 3.14 1.18 ‒1.48 

i02 .56 .64 .17 1.92 2.20 0.59 7.61 4.68 2.05 ‒1.85 

i03 .54 .63 .14 1.66 1.95 0.43 7.24 4.54 1.64 ‒2.23 

i04 .26 .37 .12 0.50 0.71 0.23 3.98 2.74 1.35 ‒0.50 

i05 .70 .58 .17 3.00 2.49 0.73 8.67 5.71 1.14 ‒3.33 

i06 .69 .60 .19 3.21 2.80 0.89 8.99 5.62 1.10 ‒3.55 

i07 .62 .58 .21 2.26 2.12 0.77 6.98 4.62 1.21 ‒2.70 

i08 .06 .34 .28 0.11 0.64 0.54 4.60 3.86 2.23 0.41 

i09 .28 .54 .31 0.65 1.27 0.73 4.62 2.94 0.20 ‒2.19 

i10 .25 .50 .31 0.55 1.11 0.69 3.90 2.78 0.80 ‒1.19 

i11 .16 .68 .40 0.46 1.97 1.16 6.34 3.90 0.16 ‒3.23 

i13 .03 .42 .53 0.08 0.96 1.23 5.10 3.22 0.45 ‒2.07 

i14 .01 .63 .51 0.02 1.84 1.49 6.98 4.05 0.78 ‒2.86 

i15 .12 .33 .56 0.28 0.75 1.28 4.15 1.49 ‒1.22 ‒4.03 

i16 .03 .46 .51 0.03 1.13 1.21 4.87 2.28 ‒1.03 ‒3.87 

(table 4 continues) 
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Table 4 (continued) 

Item F1 F2 F3 a1 a2 a3 d1 d2 d3 d4 

i17 .14 .14 .54 0.28 0.29 1.12 4.55 3.05 1.06 ‒1.61 

i18 .36 .08 .74 1.07 0.23 2.24 5.97 3.59 0.38 ‒3.45 

i19 .24 .23 .70 0.64 0.63 1.89 7.68 4.92 1.83 ‒2.06 

i20 .44 .14 .65 1.24 0.41 1.85 5.71 3.98 0.98 ‒2.55 

Note. F1 = loading factor for the cognitive dimension; F2 = loading factor for the emotional dimension; 

F3 = loading factor for the social dimension; a1 = discrimination parameter for the cognitive dimension; 

a2 = discrimination parameter for the emotional dimension; a3 = discrimination parameter for the social 

dimension; d1 = easiness parameter for choosing Category 2 (disagree); d2 = easiness parameter for 

choosing Category 3 (neither disagree nor agree); d3 = easiness parameter for choosing Category 4 

(agree); d4 = easiness parameter for choosing Category 5 (strongly agree). 

 

 

Figure 3 shows the item vector and participant parameters in the same 3-dimensional space scale. 

Figure 3(d) describes all items vector, Figure 3(a) for the cognitive items vector, Figure 3(b) for the behav-

ioral items vector, and Figure 3(c) depicts the social items vector. Meanwhile, Figure 3(e) shows the 657 

participants’ positions in a 3-dimensional space, indicating the relative position of each when projected on 

the axes of the cognitive, behavioral, and social dimensions. 

 

 

DISCUSSION 

 

The present study delved into applying the multidimensional item response theory (MIRT) to scruti-

nize the internal structure of a construct, specifically in the context of exploring and confirming dimensions of 

student engagement. The outcomes of the analysis provided valuable insights into the nature of this construct, 

shedding light on its multidimensional facets. This section discusses the key findings, offers visual representa-

tions of the multidimensional structure, and underscores the significance of MIRT in psychometric assessment. 

The study primary objective was to unravel the latent dimensions inherent in student engagement. 

Drawing on the multidimensional approach validated by C.-Y. Chen et al. (2018) in their examination of the 

ages and stages questionnaires and the insights of Carlucci et al. (2023) on the state-trait inventory for cog-

nitive and somatic anxiety, the results exhibited robust support for the multidimensional structure of the 

scale, revealing that the items tapped into multiple dimensions within the construct — this multidimension-

ality, akin to the findings in both C.-Y. Chen et al. (2018) and Carlucci et al. (2023) further validated con-

firmatory full-information item factor analysis outcomes. 

The exploratory full-information item factor analysis comparing one, two, or three dimensions re-

veals that student engagement is not a monolithic construct but a multifaceted one comprising three interre-

lated dimensions. These dimensions, reflecting the interconnected nature of child development and anxiety 

constructs found in the earlier studies, could encompass cognitive, emotional, and behavioral aspects. This 

highlights how students interact with the learning process and their educational environment, similar to the 

multidimensional interactions observed in child development and anxiety assessments. 

This multidimensional perspective of student engagement, mirroring the complex structures unrav-

eled in the ASQ-3 and STICSA scales, has implications for educators and policymakers. It underscores the 

importance of addressing the various facets of engagement to promote holistic student development and 

improved learning outcomes, much like the implications drawn from C.-Y. Chen et al. (2018) and Carlucci 

et al. (2023) for their respective fields. 
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Figure 3 

Item and participants’ parameters in 3-dimensional space 

 

 

The application of exploratory multidimensional item factor analysis lends empirical support to the 

contention that student engagement is inherently multidimensional. By scrutinizing the responses to various 

engagement-related items, researchers gained insights into the underlying structure of this construct, akin to 

the approach used in the studies by C.-Y. Chen et al. (2018) and Carlucci et al. (2023). These studies empha-

sized the need for a nuanced understanding of complex constructs, a principle echoed in our findings. The 

emergence of distinct factors within student engagement underscores the idea that it cannot be reduced to a 

singular, uniform concept. Instead, it manifests as a complex interplay of several dimensions, each contributing 

b a 

c 
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uniquely to the overall engagement experience, mirroring the multidimensionality uncovered in child devel-

opment and anxiety assessments. 

Referring to the results in Table 3A in the Appendix, there was evidence that some items reveal one 

dimension, while others contain 2-dimensional loadings. Item 1 (“I feel energized to complete my study”), 

Item 2 (“I really pay attention to my study”), Item 3 (“I devote all my intellectual effort to my study”), Item 5 

(“I am deeply excited with my study”), Item 6 (“I am enthusiastic about my study”), and Item 7 (“I find my 

study meaningful”) contain cognitive and behavioral dimensions. Item 8 (“An unfinished assignment makes 

me always think about it”) contains only one behavioral dimension. Meanwhile, Item 9 (“I am voluntarily 

increasing my study time”), Item 10 (“Even though I am tired, I sincerely attend when there are additional 

hours of lectures”), Item 11 (“I am courageous in lectures”), Item 13 (“When I do not understand, I ask ques-

tions in class discussions”), Item 14 (“I often do extra initiatives to complete coursework”), Item 15 (“I always 

actively take a role for my class”), and Item 16 (“I do more than expected by the lecturer”) reveal both behav-

ioral and social dimensions. Next, Item 17 (“I am used to cooperating with other students when I have prob-

lems”) and Item 19 (“I develop a good relationship with my lecturers”) each only reveal the social dimension, 

while Item 18 (“I belong to this campus”) and Item 20 (“Being a student in this campus makes me feel pas-

sionate”) contain both cognitive and social dimensions. This indicates a complex and interconnected structure, 

similar to the multidimensional constructs found in developmental and anxiety scales. Additionally, certain 

items exclusively revealing the social dimension and others containing both cognitive and social dimensions 

further validate the multidimensionality of student engagement, akin to the findings in the studies above.  

The findings from this study, in conjunction with those of C.-Y. Chen et al. (2018) and Carlucci et 

al. (2023), reinforce the intricate nature of psychological constructs, particularly in the context of student 

engagement. The multidimensional structure identified in this study echoes the complexities observed in 

child development and anxiety assessments, underscoring a broader trend in psychological research that rec-

ognizes the multifaceted nature of human behavior and cognition. This trend moves away from oversimpli-

fied, unidimensional interpretations, advocating for a more nuanced understanding of psychological phe-

nomena. The presence of interrelated cognitive, emotional, and behavioral dimensions in student engagement 

parallels findings in other domains, suggesting a universal need for multifaceted analytical approaches in 

psychological assessments. 

The paper provision of vector depictions in a 3-dimensional space added a visual dimension to the 

results, aiding readers in grasping the multidimensional nature of the construct. Such visualizations offer an 

intuitive representation of how the items are situated within the broader cognitive, behavioral, and social 

dimensions. This approach reflects the interconnected nature of these dimensions, as seen in child develop-

ment and anxiety assessments, and enhances the accessibility of the findings, making them more compre-

hensible to a broader audience. The emergence of distinct yet interrelated dimensions in student engagement 

challenges the notion of it being a singular, uniform concept. It underscores the complexities observed in 

similar psychological constructs and suggests a universal need for multifaceted analytical approaches in psy-

chological assessments. 

 

 

CONCLUSION 

 

In conclusion, this study has underscored the utility of the multidimensional item response theory 

(MIRT) in both exploratory and confirmatory analyses of constructs like student engagement. Identifying and 

validating multidimensional factors within the construct contributes to a deeper understanding of its complexity. 
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The within-item multidimensional structure and the visual depictions further enhance the richness of the find-

ings. As the study advocates, MIRT serves as an invaluable tool in the arsenal of psychometric assessments, 

enabling researchers and practitioners to unravel the multidimensional fabric of various constructs. 

The results of this study have practical implications for education. Addressing cognitive, behavioral, 

and social engagement is critical to fostering a holistic learning environment, and educators are encouraged to 

use integrated strategies, such as challenging curriculum for cognitive engagement, participatory teaching for 

behavioral engagement, and collaborative activities for social engagement. This ensures the activation and 

nurturing of all aspects of student engagement. In addition, in recognizing the varying levels of engagement 

across different dimensions, educators should adopt different teaching techniques tailored to the engagement 

profiles of diverse student groups. This pedagogical approach ensures that each student’s unique engagement 

needs are addressed. By embracing these multidimensional strategies, educators can create a more inclusive 

and effective learning environment that accommodates the preferences and needs of diverse students. 
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APPENDIX 

Additional Tables 

 

Table 1A 

Model fit for exploratory factor IRT models 

 

Model AIC BIC M2 df RMSEA SRMR TLI CFI 

One factor 27386.14 27812.47 385.930 95 .068 .082 .805 .838 

Two factors 26773.81 27280.92 237.424 77 .056 .049 .868 .911 

Three factors 26647.14 27230.54 122.025 60 .040 .039 .934 .965 

Note. AIC = Akaike information criteria; BIC = Bayesian information criteria; M2 = M2 statistic; RMSEA = 

root-mean-square error of approximation; SRMR = standardized root-mean-square residual; TLI = Tucker- 

Lewis index; CFI = comparative fit index. 

 

Table 2A 

Likelihood ratio test model comparison 

 

Model N Par logLik 2 df p 

One factor 95 ‒13598.07 ‒ ‒ ‒ 

Two factors 113 ‒13273.91 648.329 18 0 

Three factors 130 ‒13193.57 160.672 17 0 

 Note. N Par = number of parameters estimated; logLik = loglikelihood. 

 

Table 3A 

Standardized factor loading on one, two, and three dimensions 

 

 F1 F2.1 F2.2 F3.1 F3.2 F3.3 

i01 .74  .74  .71  

i02 .85  .86  .82  

i03 .82  .84  .80  

i04 .46  .41  .38  

i05 .88  .94  .94  

i06 .90  .94  .93  

i07 .87  .86  .84  

i08 .39 .37    .41 

i09 .67 .31 .43  .36 .39 

i10 .63 .31 .38  .31 .41 

i11 .74 .47 .36   .62 

i13 .54 .70    .52 

i14 .66 .66    .76 

i15 .54 .70  .41  .34 

i16 .56 .66    .54 

i17 .41 .64  .49   

i18 .59 .74  .85   

i19 .60 .80  .70   

i20 .64 .57  .63   

Note. F1 = loading factor for the unidimensional model; F2.1 = loading factor for the first 

dimension of the 2-dimensional model; F2.2 = loading factor for the second dimension of the 

2-dimensional model; F3.1 = loading factor for the first dimension of the 3-dimensional 

model; F3.2 = loading factor for the second dimension of the 3-dimensional model; F3.3 = 

loading factor for the third dimension of 3-dimensional model. 
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Table 4A 

Multidimensional discrimination and difficulty parameters 

 

 MDISC MDIFF1 MDIFF2 MDIFF3 MDIFF4 

i01 2.00 ‒2.64 ‒1.57 ‒0.59 0.74 

i02 2.98 ‒2.56 ‒1.57 ‒0.69 0.62 

i03 2.60 ‒2.79 ‒1.75 ‒0.63 0.86 

i04 0.90 ‒4.42 ‒3.04 ‒1.50 0.56 

i05 3.97 ‒2.19 ‒1.44 ‒0.29 0.84 

i06 4.35 ‒2.07 ‒1.30 ‒0.25 0.82 

i07 3.19 ‒2.19 ‒1.45 ‒0.38 0.84 

i08 0.84 ‒5.44 ‒4.57 ‒2.64 ‒0.49 

i09 1.60 ‒2.89 ‒1.84 ‒0.13 1.37 

i10 1.42 ‒2.75 ‒1.96 ‒0.57 0.84 

i11 2.33 ‒2.72 ‒1.67 ‒0.07 1.39 

i13 1.56 ‒3.26 ‒2.06 ‒0.29 1.32 

i14 2.37 ‒2.95 ‒1.71 ‒0.33 1.21 

i15 1.51 ‒2.75 ‒0.99 0.81 2.67 

i16 1.66 ‒2.94 ‒1.37 0.62 2.34 

i17 1.19 ‒3.82 ‒2.56 ‒0.89 1.35 

i18 2.49 ‒2.40 ‒1.44 ‒0.15 1.38 

i19 2.09 ‒3.67 ‒2.35 ‒0.88 0.99 

i20 2.26 ‒2.52 ‒1.76 ‒0.44 1.12 

Note. MDISC = multidimensional discrimination; MDIFF1 = multidimensional 

difficulty for choosing Category 2 (disagree); MDIFF2 = multidimensional diffi-
culty for choosing Category 3 (neither disagree nor agree); MDIFF3 = multidi-

mensional difficulty for choosing Category 4 (agree); MDIFF4 = multidimen-

sional difficulty for choosing Category 5 (strongly agree). 

 


