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Abstract—Avian Influenza A/H9N2 is a significant threat to
the global poultry industry and presents occasional but severe
health risks to humans. Given the potential ramifications of
an outbreak, the swift and accurate identification of effective
antiviral compounds becomes crucial. Traditional methods em-
ployed for predicting the efficacy of these compounds often
encounter challenges, particularly in maintaining a balance
between accuracy and efficiency. Recognizing these limitations,
our study introduces an innovative predictive approach. We
leverage the combined strengths of Radial Basis Function (RBF)
networks and Logistic Regression. This methodology transforms
compound features using the RBF network. The changed fea-
tures are then fed into a Logistic Regression model to make
predictions regarding efficacy. Initial findings from our research
indicate a remarkable enhancement in prediction accuracy and
precision compared to prevalent methods. Furthermore, our
study provides a potentially transformative tool for antiviral
compound prediction and establishes a precedent, emphasizing
the profound potential of hybrid modeling techniques in advanc-
ing biomedical research.

Index Terms—Avian Influenza A/H9N2, Hybrid machine
learning models, Log-RBF methodology, Antiviral compound
prediction, Drug repurposing.

I. INTRODUCTION

Avian influenza A/H9N2, commonly called bird flu, is a

significant concern for the poultry industry and public health

[1]. It is highly contagious among birds and can occasionally

be transmitted to humans, leading to a need for effective

countermeasures to address the potential global implications

of this virus.

Identifying effective antiviral compounds is crucial for

global health. This is especially important when vaccines

*Corresponding author: Siti Amiroch. siti.amiroch@unisda.ac.id

may not work against viruses like A/H9N2 [2]. Our research

highlights the significance of this approach in reducing the

impact of diseases and improving global public health security

[3].

Historically, we relied on tangible experimental methodolo-

gies for drug discovery and development [4], [5]. However,

with the advent and progression of computational techniques,

our inclination has shifted toward in-silico methods. Virtual

screening, a distinguished computational methodology, fa-

cilitates the identification of molecular structures likely to

bind to specific drug targets [6], [7]. Despite the merits of

these techniques, we acknowledge their inherent limitations.

On the other hand, machine learning can efficiently predict

binding affinity based on patterns in the data without explicitly

modeling the physical interactions [8], [9]. Algorithms such as

the support vector machine (SVM), random forests, gradient

boosting, multilayer perceptron (MLP), and logistic regression

(LR) often face challenges when deciphering the multifaceted,

non-linear dynamics intrinsic to biological data [10].

We propose the Log-RBF method, an innovative approach

that combines the precision of Logistic Regression [11] with

the robust capabilities of the Kernel Radial Basis Function

Multiquadratic [12]. This hybrid model leverages the strengths

of both techniques and offers potential solutions to the

challenges of existing predictive methodologies. We aim to

identify active compounds effective against avian influenza

A/H9N2 using the Log-RBF method. In this context, our

approach represents a paradigm shift in the search for antiviral

compounds. It leverages the extensive chemical data available

in the public domain [13] and adheres to the principles of drug
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Fig. 1: The research methodology framework

repurposing [14].

This new approach accelerates the identification of antiviral

agents, reducing traditional drug discovery time and cost,

and enhances the understanding and application of machine

learning in complex biological systems [15]. Our research

provides an efficient and cost-effective method for identify-

ing potential antiviral compounds effective against A/H9N2,

setting a precedent for responding to future viral outbreaks.

II. MATERIAL AND METHOD

Figure 1 presents the research methodology framework

we used to predict candidate antiviral compounds employing

Logistic Regression, RBF-Multiquadrics, and the XGBoost

method. Logistic Regression and XGBoost have been applied

previously, and their results can be seen in our work [9]. In this

study, we primarily focus on the RBF-Multiquadrics method,

using the other methods for comparative purposes.

A. Collection and Selection Data

We obtained data on the H9N2 virus target protein from on-

line databases, including the protein data bank (PDB) accessed

on April 1, 2021, and The European Bioinformatics Institute

(EBI) accessed on April 1, 2021. From these datasets, we

identified five significant proteins of the H9N2 virus: protein

basic polymerase2 (PB2), protein basic polymerase1 (PB1),

protein polymerase acid (PA), hemagglutinin (HA), and neu-

raminidase (NS) [16]. These proteins are confirmed targets

for active compounds inhibiting avian influenza A/H9N2 virus

[17]. Given the established significance of these five proteins

as targets of the H9N2 virus [16], we focus on identifying

key compounds related to these proteins.

B. Data Preparation

We have a set of crucial steps to develop and optimize data,

each tailored to ensure high-quality data and effective model-

ing. Before training our classification model, we meticulously

performed these procedures.

• Data Selection: The dataset was made reliable and

consistent by thoroughly identifying and clearing any

noise text after collection [18].

• Data Composition: Our finalized dataset comprised 157

active and 600 decoy compounds. This selection aims to

provide a balanced representation, which is crucial for

effective modeling.

• Feature Extraction: We then extracted critical features

from the dataset using the Pubchem fingerprint method

[19]. This step transformed the raw data into a format

suitable for machine learning algorithms, focusing on the

most salient features.

• Data Matrix: Post-feature extraction, our dataset as-

sumed a matrix form of size 757 × 881, representing

compounds against their extracted features.

• Dimensionality Reduction: Given the vastness of the

feature set, we employed Principal Component Analysis

(PCA) to reduce the dimensionality of our dataset [20].

This step retained the most critical information while

reducing the data size and reducing dimensionality 134.

In the concluding phase, we labeled the data into respective

classes, ensuring clear demarcation between active and decoy

compounds [21]. Subsequently, the dataset was divided into

training and test sets to evaluate previously unseen data

robustly. We meticulously prepared and processed our dataset

to ensure strong model performance and generalization.

C. Prediction using Logistic Regression-RBF

We use the Logistic Regression-Radial Basis Function

(RBF) approach to improve prediction and classification ac-

curacy, which combines the strengths of logistic regression

and the RBF network. This approach uses a non-linear trans-

formation of the input space for function approximation.

• Data Representation: Given a dataset, the input features

and target outputs are represented in Equation (1), defin-

ing the matrix representations of input and output data.

X =











x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d

...
...

. . .
...

xm,1 xm,2 . . . xm,d











, Y =











y1

y2

...

ym











(1)

• Feedforward Process: The input data is passed through

the RBF network, transforming the feature space as per

Equation (2).

zi = w0 +
n

∑
j=1

w jφ(xi,c j) (2)

where φ is the multiquadrics function, and c j represents

the j-th center of the RBF [22].
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• Activation using Logistic Regression: The transformed

features are fed into the logistic regression model, result-

ing in the output described by Equation (3).

si =
1

1+ exp(−zi)
(3)

• Backpropagation: The backpropagation process adjusts

the weights based on the error calculated between pre-

dicted and actual outputs, as detailed in Equation (4).

w
(t+1)
j = w

(t)
j −α

∂L

∂w j

∣

∣

∣

∣

(t)

(4)

where L is the loss function, α is the learning rate, and

t denotes the iteration number.

• Regularization: Regularization is introduced to prevent

overfitting, as formulated in Equation (5), by adding a

regularization term to the loss function.

L =
m

∑
i=1

l(yi,si)+
λ

2
∥w∥2

2 (5)

where λ is the regularization parameter.

• Prediction: The final prediction step uses the trained

model to predict output for new inputs, following the

formula in Equation (6).

yi =
1

1+ exp(−zi)
(6)

Through this method, the Logistic Regression-RBF offers

a rigorous and comprehensive approach to classification and

prediction, promising enhanced accuracy and reliability.

D. Evaluation Criteria and Measuring Tools

Our classification model’s evaluation employs various stan-

dard and advanced metrics.

• Confusion Matrix: The confusion matrix is a funda-

mental tool for assessing a model’s predictions against

actual outcomes. It comprises True Positives (TP), False

Positives (FP), True Negatives (TN), and False Negatives

(FN), each offering insights into specific aspects of the

model’s predictive capabilities.

• Accuracy (ACC): Equation (7) measures the model’s

overall accuracy, considering both positive and negative

correct predictions.

ACC =
T P+T N

T P+T N +FP+FN
(7)

• Sensitivity (Sn): Sensitivity, or True Positive Rate, is

calculated per Equation (8), indicating the model’s ability

to identify positive instances correctly.

Sn =
T P

T P+FN
(8)

• Specificity (Sp): Specificity measures the accuracy in

classifying negative instances, as shown in Equation (9).

Sp =
T N

T N +FP
(9)

• AUC/ROC: The Receiver Operating Characteristic

(ROC) curve plots the True Positive Rate against the

False Positive Rate across different thresholds. The area

under this curve (AUC) is a scalar representation of

the model’s discriminative power. An AUC closer to 1

indicates the superior model.

• Balanced Accuracy (BACC): Balanced Accuracy, com-

puted using Equation (10), provides an accuracy measure

for potential class imbalances.

BACC =
Sn +Sp

2
(10)

These metrics ensure a comprehensive and multifaceted

evaluation of our classification model.

III. RESULTS

Previous research [9] utilized various machine learning

algorithms, including Logistic Regression, k-Nearest Neigh-

bors, Support Vector Machine, Multilayer Perceptron, Ran-

dom Forest, Gradient Boosting, and XGBoost, for virtual

screening. Synthetic active compounds were used to identify

potential antiviral candidates against H9N2. The current study

introduces a novel method, Log-RBF, and compares its test

parameters with those of machine learning techniques such as

XGBoost, Logistic Regression, and RBF-Multiquadratic.

A. Model Building and Validation

Log-RBF is a novel method that enhances Logistic Re-

gression by integrating it with the Radial Basis Function

kernel. This hybrid model transforms input data into a high-

dimensional feature space, overcoming the linear limitations

of Logistic Regression and improving its performance with

non-linear datasets.

Table I shows the ideal training parameters for the Log-

RBF model after extensive testing.

TABLE I: Experimental Results for Parameter Selection

α Iterations λ Accuracy CT (seconds)

1×10−4 100 0.3 0.9079 29.34
1000 0.3 0.9211 301.88
3000 0.3 0.9123 1026.49
5000 0.3 0.9298 1761.53
5000 0.1 0.9386 1477.70
7000 0.1 0.9386 2092.25

1×10−3 8000 0.05 0.9518 2411.87

Where α,λ, and CT in Table I represent the learning

rate, regularization, and computational times, respectively.

The results in Table I indicate that a parameter with high

accuracy was selected for training the data, as shown in Table

II.

TABLE II: Parameters Used for Training Process

Parameter Description Value

α Learning rate 0.001
λ Constant for regularization 0.05
Epoch Number of iterations used 200

The resulting graph from the selected parameters in Table

II is shown in Figure 2.

Figure 2 demonstrates that the accuracy of the training

data is not significantly different from the accuracy of the

testing data. At epoch 200, the accuracy of the testing data

converges with that of the training data. However, from epoch

200 onwards, the accuracy of the training data exceeds that
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Fig. 2: Visualization of training and validation data accuracy

with α = 0.001, λ = 0.05, and epoch=200

of the testing data. The accuracy of the testing data tends to

be more stable across each epoch, increasing above 0.95 as

the number of epochs rises. Plotting a graph to compare the

accuracy of the training and testing processes reveals that the

gap between the two is not significant. This indicates that the

model we developed does not exhibit symptoms of overfitting,

which is characterized by decreasing error during training

(with larger epochs) but increasing error during testing.

B. Performance Evaluation

The model’s performance was evaluated using 30% of

the compound data. This proportion was determined based

on experiments conducted with various data proportions, as

shown in Table III. The results from the optimal proportion

were then applied in this study.

TABLE III: Testing results of training and testing data pro-

portions in the Log-RBF method

Proportion (Log-RBF) ACC Sn Sp ROC BACC

80% : 20% 0.8224 0.7812 0.9212 0.8512 0.8512
75% : 25% 0.9478 0.8792 0.9573 0.9183 0.9183
70% : 30% 0.9518 0.8696 0.9725 0.9210 0.9210
65% : 35% 0.9286 0.8892 0.9413 0.9153 0.9153
60% : 40% 0.9247 0.8893 0.9542 0.9218 0.9218

Based on the test results in Table III, the best proportion

for training and testing data using the Log-RBF method was

found to be 70% : 30%. Consequently, this proportion was

used as the benchmark for training and testing the data.

The following compares the performance of Logistic Re-

gression, Radial Basis Function (using Multiquadratic kernel),

Log-RBF, and XGBoost models using training and testing

data.

TABLE IV: Comparison of model performance for test data

results

Classification Model ACC Sn Sp ROC BACC

LR 0.9474 0.8666 0.9672 0.9169 0.9169
RBF-Multiquadratic 0.8465 0.8394 1 0.9197 0.9197
Log-RBF 0.9518 0.8696 0.9725 0.9210 0.9210
XGBoost 0.9649 0.8222 1 0.9111 0.9111

In Table IV, Log-RBF outperforms Logistic Regression

and RBF-Multiquadratic in terms of accuracy, sensitivity,

ROC, and BACC, but is slightly outperformed by RBF-

Multiquadratic and XGBoost in terms of specificity. Speci-

ficity is the true negative rate. While a higher specificity

value indicates better prediction for the negative class, in

this context, where both positive and negative classes are

predicted, a slightly lower specificity value for Log-RBF com-

pared to RBF-Multiquadratic and XGBoost is not significantly

detrimental. The Log-RBF model in Table IV shows slightly

lower accuracy than XGBoost, but outperforms it in terms of

sensitivity, ROC score, and BACC. Overall, as a modification

between Logistic Regression and RBF-Multiquadratic, Log-

RBF demonstrates a significant performance improvement

over both Logistic Regression and RBF-Multiquadratic.

C. Prediction Results of Synthetic Compound Candidates

The Log-RBF model predicted synthetic compound data,

totaling 157, and verified herbal compound data, totaling 845.

From the prediction results on synthetic compounds, with a

threshold of 0.5, 151 compounds were identified. A more

specific threshold of 0.992 resulted in 124 compounds. Table

V below lists the top 30 synthetic compounds as predicted by

the Log-RBF model.

TABLE V: List of synthetic compounds with the highest Log-

RBF prediction results

No. Compound Name C ID Score

1 Ligan C 6442269 0.999884603
2 Ligan D 6912404 0.999794484
3 Laninamivir O 9847629 0.999785829
4 Pyrrolidine D 5329293 0.999710169
5 Zanamivir 20112027 0.999668209
6 Zanamivir 60855 0.999668209
7 4-Amino-N 445533 0.999657643
8 Deoxysialic 65309 0.999652969
9 Pyridine D40 5278296 0.999573566

10 Pyrrolidine D34 5329301 0.99956914
11 Cyclopentane D16g 5329067 0.99950569
12 2,4-deoxy 4G 5288452 0.999429872
13 AC1NQT9J 5278609 0.999293296
14 AC1NQT9P 5278611 0.999293296
15 AC1NQT9V 5278613 0.999293296
16 AC1NQTAA 5278618 0.999293296
17 Cyclopentane D16f 5329066 0.999293296
18 AC1NQT9Y 5278614 0.999166495
19 Benzoic Acid deriv. 6b 506044 0.999137395
20 Benzoic Acid deriv. 149 506095 0.999098228
21 Pyrrolidine deriv. 24 5329292 0.999045962
22 BANA 113 446323 0.998998429
23 4-acetamido A 446367 0.998966553
24 AC1NQT8M 5278598 0.998931435
25 AC1NQT8P 5278599 0.998931435
26 AC1NQT8Y 5278602 0.998931435
27 AC1NQT91 5278603 0.998931435
28 AIDS292405 5278607 0.998931435
29 AC1NQTA4 5278616 0.998919372
30 AC1NQTA7 5278617 0.998912794

”Ligan C” and ”Ligan D” are abbreviations used for lig-

ands. Table VI compares the prediction results of the XGBoost

model with those of the Log-RBF model for the same set

of compounds, including the top 30 compounds from the

XGBoost prediction results.

As shown in Table V, and further in Table VI, the prediction

results vary. For example, for the compound benzoic acid
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TABLE VI: Comparison of compound rankings and scores

between XGB and log-RBF methods.

Compound Pubchem Rank Score Rank Score

Name Id XGB XGB Log-RBF Log-RBF

AC1NQT9A 5278606 1 0.9998 43 0.9985
AC1NQT8D 5278595 2 0.9997 48 0.9983
AC1NQT8G 5278596 3 0.9997 49 0.9983
AIDS292422 5278601 4 0.9997 50 0.9983
AC1NQT9G 5278608 5 0.9997 56 0.9980
AC1NQT8M 5278598 6 0.9997 24 0.9989
AC1NQT8P 5278599 7 0.9997 25 0.9989
AC1NQT8Y 5278602 8 0.9997 26 0.9989
AC1NQT91 5278603 9 0.9997 27 0.9989
AIDS292405 5278607 10 0.9997 28 0.9989
2,4-DEOXY-4 5288452 11 0.9997 12 0.9994
AC1NQT7P 5278587 12 0.9997 32 0.9988
AC1NQT7S 5278588 13 0.9997 33 0.9988
AC1NQT7V 5278589 14 0.9997 34 0.9988
AC1NQT7Y 5278590 15 0.9997 35 0.9988
AIDS292384 5278586 16 0.9997 36 0.9988
AC1NQT77 5278581 17 0.9996 51 0.9981
AC1NQT7A 5278582 18 0.9996 52 0.9981
AC1NQT7G 5278584 19 0.9996 53 0.9981
AC1NQT7J 5278585 20 0.9996 54 0.9981
AC1NQT9J 5278609 21 0.9996 13 0.9992
AC1NQT9P 5278611 22 0.9996 14 0.9992
AC1NQT9V 5278613 23 0.9996 15 0.9992
AC1NQTAA 5278618 24 0.9996 16 0.9992
Cyclo. P16f 5329066 25 0.9996 17 0.9992
AC1NQT8A 5278594 26 0.9995 41 0.9987
AC1NQTA4 5278616 27 0.9995 29 0.9989
Pyrrolidine 5329298 28 0.9995 91 0.9911
Acetylamino 446326 29 0.9993 95 0.9894
Benzoic AI7 5275967 30 0.9993 76 0.9952

inhibitor 7 with pubchem ID 5275967, XGBoost ranks it

30th, while Log-RBF ranks it 76th. The ranking difference

is significant, but the prediction score difference is only

0.004092446. A random comparison of a few compounds,

as in Table VII, shows that the prediction results of XGBoost

and Log-RBF on some potential compounds are very close.

Table VII illustrates that the differences between XGBoost

and Log-RBF predictions on some potential compounds are

minimal

IV. DISCUSSION

When dealing with non-linear datasets, logistic regression

faces various challenges. The Log-RBF method acknowledges

these challenges and proposes a solution. By merging the

Radial Basis Function (RBF) kernel with logistic regression,

we have addressed the limitations of each method while

capitalizing on their strengths. This synergy is crucial to

enhance the prediction of antiviral compounds for Avian

Influenza A/H9N2 in our study [23].

Our results, as evidenced in Tables I, II and Figure 2,

demonstrate the efficacy of this approach. The convergence in

accuracy between training and testing datasets around epoch

200, as illustrated in Figure 2, is particularly noteworthy.

It suggests the model generalizes well to new data without

overfitting or underfitting.

The meticulous optimization of the Log-RBF model’s pa-

rameters reflects a tailored approach to this dataset. The con-

sistent performance across epochs, particularly after the 200th,

underscores the model’s robustness see Table II. This stability

in the testing data’s accuracy, particularly its maintenance

above 0.95, suggests effective data pattern capture.

However, the minimal divergence in accuracy post the

200th epoch reminds us of the dynamic nature of machine

learning models [24]. It underscores the importance of con-

tinuous monitoring and potential recalibration, especially in

practical applications.

The Log-RBF method represents a significant step in ad-

dressing the real-life challenge of rapid antiviral compound

discovery. Its efficiency in identifying potential compounds is

crucial in public health contexts, particularly during outbreaks

[25]. This approach could significantly reduce the time and

resources needed in the initial stages of pharmaceutical devel-

opment, thereby accelerating response times in public health

emergencies.

Furthermore, our study contributes to the broader under-

standing of machine learning in biomedicine. By applying

the Log-RBF method to a complex biological problem, we

demonstrate its practicality and effectiveness in a real-world

context [26]. This advancement not only paves the way for

future research but also opens doors to myriad applications

beyond the scope of our current investigation.

The Log-RBF method improves binary classification for

non-linear datasets and has potential in practical applications

such as healthcare and pharmaceuticals. It can be refined and

tested on larger datasets with advanced techniques like deep

learning for better performance.

V. CONCLUSION

Our study has shown that the Log-RBF method is a

reliable and promising alternative for predicting effective an-

tiviral compounds against Avian Influenza A/H9N2. It outper-

forms traditional methods like Logistic Regression and RBF-

Multiquadratic regarding accuracy, sensitivity, ROC score, and

BACC. Despite differences in prediction rankings, the Log-

RBF method also achieved similar prediction scores as the

XGBoost model.

This study significantly contributes to the ongoing efforts

to combat Avian Influenza A/H9N2. The Log-RBF method

identified 124 potential antiviral compounds with a high

threshold of 0.992, displaying strong binding affinities and

promising pharmacological profiles. These compounds, which

require further in vitro and in vivo validation, could serve as

vital agents in the battle against the H9N2 virus.

Our work demonstrates the value of machine learning

in drug discovery. The Log-RBF method models non-linear

feature spaces and provides interpretable results, making it

a powerful tool for addressing biological data challenges.

However, this begins a long journey toward effective antiviral

solutions. Future research should refine the Log-RBF method-

ology, incorporate more diverse chemical entities, and collab-

orate with experimental researchers for compound validation.

The fight against Avian Influenza A/H9N2 continues, but

with advancements like the Log-RBF method, we are better

equipped to tackle this challenge and develop effective thera-

peutic solutions.
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TABLE VII: Comparison of some potential compounds at random

No Compound Name C ID Rank XGBoost Score XGBoost Rank Log-RBF Score Log-RBF

1 Oseltamivir Carboxylate 449381 62 0.9984663 86 0.993046299
2 Benzoic acid derive 130 506090 67 0.9982233 87 0.992967571
3 Benzoic acid inhibitor 6 1708 72 0.9980004 42 0.998629097
4 AC1NQT84 5278592 84 0.9970549 68 0.99619591
5 Laninamivir Octanoate 9847629 103 0.9958969 3 0.999785829
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