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Abstract. In this study, we propose a novel method for creating nutritious menus using vertex coloring, a fundamental concept
in graph theory. Our team has combined the Welch-Powell algorithm with a mathematical combination technique to generate a
range of menus that adhere to low-calorie nutritional guidelines while offering diversity. To showcase the practicality and efficacy
of our approach, we have utilized dynamic simulation in Matlab, which generates three distinct diet combinations customized to
meet specific nutritional needs. Our methodology can serve as a blueprint for developing balanced meal plans and underscores the
flexibility of graph theory in real-world applications. Additionally, we have explored an alternative approach to arranging menus
that employ vertex-disjoint paths in a graph, resulting in a streamlined process for creating diverse and nutritionally balanced
menus. This study highlights the significance of innovative solutions for addressing the complexities of diet planning and provides
valuable insights for future research.

INTRODUCTION

Graph theory and dietary planning can be combined to address the complexities of nutritional balance. In this work,
we explore the application of vertex coloring in graph theory to enhance menu planning strategies. The focus is on
achieving optimal nutrient intake and absorption. Traditional dietary planning often overlooks the critical aspect of
calorie content, leading to nutritional imbalances [1]. This study aims to bridge this gap by incorporating graph-
theoretical concepts and offering a systematic approach to meal composition.

Graph theory, renowned for solving intricate combinatorial problems, offers a robust framework for this endeavor
[2]. We introduce a graph G, denoted as G = (V,E), wherein each vertex V symbolizes a distinct food item, and the
edges E represent the nutritional compatibility between these items. The process of vertex coloring, based on Gross
(2018), assigns unique colors to each vertex such that no two adjacent vertices share the same color, ensuring a diverse
and nutritionally balanced meal composition [3], [4].

The application of vertex coloring extends beyond its traditional realms in computer science, encompassing a
wide range of problems from scheduling to network optimization [5]. Recognized as a challenging combinatorial
optimization problem [6] and closely associated with minimal coloring concepts [7], vertex coloring in this context
serves as a tool for methodically arranging balanced food menus.

This study contrasts traditional menu planning approaches, often sidelining calorie considerations, as highlighted
by Joanne and Rebecca [8], and adopts a different perspective. By integrating the principles of vertex coloring, as
explored in the works of Amiroch and Andini [9], with a focus on calorie content, this approach links to broader graph
theory concepts like matching in bipartite graphs [10] and Hall’s Theorem [11], providing a framework for caloric
adequacy in menu planning.

This research thus extends the utility of vertex coloring, a tool predominantly utilized in computer science and
scheduling, to the practical and critical field of diet planning [12]. We propose a unique methodology for constructing
varied and nutritionally complete menus, employing the Welch-Powell algorithm and other mathematical strategies in
menu arrangement [13], [14].

Integrating vertex coloring and graph theory with dietetics showcases the versatility of mathematical approaches
and opens new avenues for practical applications in everyday nutrition planning [15].

METHODS

This research employs graph theory to innovate nutritional menu planning, utilizing two methodologies: vertex color-
ing on a graph and vertex-disjoint paths in a graph. Both methods are detailed below.
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Vertex Coloring on a Graph

The data for this study were sourced from the dietary habits of the population in Lamongan, East Java, Indonesia
[9], with calorie content information obtained from the official health website www.kemkes.go.id. The methodology
involved several key steps:

1. Listing of Menu Items: Menu items were classified into carbohydrates, dishes, vegetables, fruits, and drinks,
each including calorie information. The menus consisted of different combinations for breakfast, lunch, and
dinner, with total combinations calculated using the multiplication rule [16].

2. Combining Menus with Calorie Consideration: Menus were strategically combined to meet specific calorie
targets for each meal: 500-600 calories for breakfast, 400-550 calories for lunch, and 300-450 calories for
dinner [17].

3. Menu Selection Process: Menus were selected and prepared to meet balanced calorie needs. In this process, a
complete daily menu was represented by V (vertex), and individual meal menus by E (edge) [18].

4. Application of Vertex Coloring: The Welch Powell Algorithm was used for menu diversification. This in-
volved ordering the vertices of graph G by decreasing degree, coloring them systematically, and ensuring no
adjacent vertices shared the same color.

Vertex-Disjoint Paths in a Graph

Sets B, L, and D were defined to represent breakfast, lunch, and dinner menus, each adhering to specific calorie
constraints. These sets were transformed into vertices of a multipartite graph, G[B,L,D]. The construction of this
graph and the identification of vertex-disjoint paths for balanced diet planning involved:

1. Finding Maximum Matching: A maximum matching, M, was identified in the subgraph of G[B, L, D] induced
by BUL.

2. Identifying Saturated Set and Second Matching: The set L' included vertices in L saturated by M. A second
maximum matching, M’, was then found in the subgraph induced by L' UD.

3. Combining Matchings for Vertex-Disjoint Paths: The combination of M and M’ represented diverse menu
combinations as vertex-disjoint paths.

Hardware and Software Utilized

To implement our methodologies, we employed specific hardware and software to ensure accurate data processing
and analysis.

* Hardware: The experiment used a Dell computer with an Intel Core i5 8th Generation processor and 8GB of
memory. This configuration provided the necessary computational power to efficiently handle graph algorithms
and data analysis tasks.

¢ Software:

— Graph Theory Analysis: MATLAB 2020 was used to implement vertex coloring and vertex-disjoint path
calculations. This software offers robust functionality for graph-based computations and mathematical
modeling.

— Data Management: MATLAB 2020 was also utilized for managing and analyzing the dietary data. Its
versatile environment facilitated the organization, storage, and retrieval of complex nutritional data sets.

— Algorithm Implementation: The Welch Powell Algorithm and other graph-theoretical computations were
executed within the MATLAB environment, taking advantage of its efficient processing capabilities for
algorithmic operations.

The combination of this specific hardware and MATLAB 2020 software played a pivotal role in successfully exe-
cuting our research, ensuring accuracy and efficiency in data processing and analysis.
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RESULTS

Results from Matlab Simulation

This study employed a Matlab simulation to design meals within the calorie range of a low-calorie diet, which is
suggested to be between 1000 and 1700 calories daily. Adhering to the principles of a healthy and balanced meal
habit, the caloric distribution was as follows [19]:

Zbreakfast calories > Zlunch calories > Zdinner calories @))]

1. Simulation Process and GUI Interaction: The simulation, leveraging vertex coloring via the Welch Powell
algorithm, was made dynamic and user-friendly through a Graphical User Interface (GUI). The GUI in Figure 1
allowed users to set the menu for a specified number of days and input minimum and maximum values based
on established balanced menu calorie rules. For instance, entering 8’ would set the menu for eight days. The
simulation presented 50 menu options for each meal, which could be further narrowed down to the top ten
preferred options.

Set the Day s Range amount of Calorie Data Amount of calorie selected
Staple food Dish Vegetables Fruit L Staple food Dish Vegetables Fruit Drin
oS |1 Breakfastiens v 2. [Rice Omelet Soup Banana Tea A 82, |PecelRice  Omelet Soup Orange Mineral
4, Rice Omelet Soup Banana Miner 18. |Rice Omelet Rempeyek Orange Skim milkl
Amount of calories selected 5 Rice Omelet Soup Papaya Tea 41, |Fried rice Omelet Soup Papaya Tea
e e 6. Rice Omelet Soup Papaya Skim 105. |Pecel Rice Liver of fried... Rempeyek Papaya Skim milk
Minimum Calorie 500 7. Rice Omelet Soup Papaya Miner 7. |Rice Omelet Soup Papaya Mineral \{
9.  |Rice Omelet Soup Orange Skim 11. |Rice Omelet Rempeyek Banana Tea
Maximum Calorie 600 11. |Rice Omelet Rempeyek Banana Tea 15. |Rice Omelet Rempeyek Papaya Skim milkd
Check 13.  |Rice Omelet Rempeyek Banana Miner 21, :Rlce Liver of fried... Soup Banana Skim milkl
15. Rice Omelet Rempeyek Papaya Skim 30. Rice Liver of fried... Rempeyek Banana Skim milkl
The menu selected are 50 18.  |Rice Omelet Rempeyek Orange Skim 80. |Pecel Rice Omelet Soup Orange Tea
Amount of deta wil 21. Rice Liver of fried... Soup Banana Skim
be selected 10 30. Rice Liver of fried... Rempeyek Banana Skim
41, Fried rice Omelet Soup Papaya Tea
;‘ 43, Fried rice Omelet Soup Papaya Miner
44, Fried rice Omelet Soup Orange Tea
g 46. Fried rice Omelet Soup Orange Miner v
Reset i< > < >
Back To Home Time Optimization p as much 0 hour 0 minute 0 second

FIGURE 1. GUI of the Breakfast Menu

2. Lunch and Dinner Menu Selection: In the lunch menu selection phase (see Figure 2), the calorie range was
observed between 351.5 and 756.5. Based on the calorie rule for lunch, the input range was adjusted from 350
minimum to 550 maximum calories, resulting in 88 selected menus. From these, ten were chosen.

The dinner menu (see Figure 3) presented 16 options with calorie counts ranging from 324 to 457.5. After
inputting a calorie range of 350 to 450, 13 menus were selected.

3. Complete Menu Arrangement for Eight Days: Upon selecting breakfast, lunch, and dinner menus, the ’Run-
ning process’ and ’Running the end of the result’ buttons in the GUI provided a comprehensive eight-day menu
list, as depicted in Figure 4.

This list displayed a variety of menu items for each meal across eight days, marked as x; — xj¢ for breakfast,
y1 — y10 for lunch, and y; — zj¢ for dinner. The adjacent vertex graph below represents the menu arrangement
over these eight days.

4. Menu Variability and Chromatic Numbers: Each node in Figure 5 represents a different day, with various
menus ensuring distinct meals each day, although some repeats occurred. The Table 1 below summarizes the
eight-day menu arrangement:

The variety of the menu combinations increases with the number of days, leading to repetitions if the number
of selected daily menus is exceeded. The simulation effectively arranges the menus and calorie content per
serving, as demonstrated in the 30-day menu arrangement graph (see Figure 6).
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Range amount of Calorie Data Amount of calorie selected

Set the Day 8
o [ Staple food Dish Vegetables Fruit C Staple food Dish Vegetables Fruit Drin
m:;::l 2. Lunch Menu v 2. |Rice Goldfish Pep... Asemsoup  Melon Coco A 2. [Rice Goldfish Pep... Asemsoup  Melon Coconut
4, Rice Goldfish Pep... Asemsoup  Melon Miner 79. Rice Chicken curry Liver of fried... Watermelon  Mineral v
Av::unt of c;;;ies :Ie;::t.sed 5. |Rice Goldfish Pep... Asemsoup  Watermelon  Coco 122. |Corn rice Fried chicken Spinach soup Watermelon  Coconut
oS unt it Rice Goldfish Pep... Asemsoup  Watermelon  Miner 137. |Corn rice Chicken curry Asemsoup  Melon Coconut
Minimum Calorie 400 8. Rice Goldfish Pep... Asemsoup  Sawo Coco 100. |Corn rice Goldfish Pep... Spinach soup Sawo Mineral v
10.  |Rice Goldfish Pep... Asemsoup ~ Sawo Miner 19, |Rice Goldfish Pep... Spinach soup Sawo Mineral v
Maximum Calorie 850 . .
11, |Rice Goldfish Pep... Spinach soup Melon Coco 118. |Corn rice Fried chicken Asemsoup Sawo Mineral f
12.  |Rice Goldfish Pep... Spinach soup Melon Cend 22. |Rice Goldfish Pep... Liver of fried... Melon Mineral
Check . .
14, Rice Goldfish Pep... Spinach soup Watermelon Coco 17. Rice Goldfish Pep... Spinach soup Sawo Coconut
The menu selected are 88 17.  |Rice Goldfish Pep... Spinach soup Sawo Coco 23. |Rice Goldfish Pep... Liver of fried... Watermelon ~ Coconut
) 19. Rice Goldfish Pep... Spinach soup Sawo Miner
Amount of data will 10 .. )
be selected 20. Rice Goldfish Pep... Liver of fried... Melon Coco
22. Rice Goldfish Pep... Liver of fried... Melon Miner
_ 23. Rice Goldfish Pep... Liver of fried... Watermelon  Coco
— 25. Rice Goldfish Pep... Liver of fried... Watermelon  Miner
28. |Rice Goldfish Pep... Liver of fried... Sawo Miner v
Reset < > < %

Back To H Time Optimization pi o as much 0 hour 0 minute 0 second

FIGURE 2. GUI of the Lunch Menu

Set the Day s Range amount of Calorie Data Amount of calorie selected
Staple food Dish Vegetables Fruit Drinksi Staple food Dish Vegetables Fruit Drinks|
3";0;:; 3. Dinner Menu v 2 R?ce C"fﬁke" soto  Stir-fry cass... '-VIBHQD manal... M:nneral wal 4, |Rice Chicken soto  Tofu Mango manal... Mineral wal
3. |Rice Chicken soto  Stir-fry cass... Sirsak Mineral wal 11. |Lontong Chicken soto  Stir-fry cass... Sirsak Mineral wal
Amount of calories selected 4, |Rice Chicken soto  Tofu Mango manal... Mineral wa| 7. |Rice Empal meat  Stir-fry cass... Sirsak Mineral wal
between 324 until 457.5 P’ " " 5 =
5. |Rice Chicken soto  Tofu Sirsak Mineral wa 3. |Rice Chicken soto  Stir-fry cass... Sirsak Mineral wa|
Minimum Calorie 350 7. |Rice Empalmeat  Stir-fry cass... Sirsak Mineral wal 9, [Rice Empalmeat  Tofu Sirsak Mineral wal
8. |Rice Empalmeat  Tofu Mango manal... Mineral wal 5, |Rice Chicken soto  Tofu Sirsak Mineral wal
Maximum Calorie 450 9. |Rice Empalmeat  Tofu Sirsak Mineral wa 15. |Lontong Empalmeat  Stir-fry cass... Sirsak Mineral wal
10. |Lontong Chicken soto  Stir-fry cass... Mango manal... Mineral wa| 10. |Lontong Chicken soto  Stir-fry cass... Mango manal... Mineral wal
Check| i
11. |Lontong Chicken soto  Stir-fry cass... Sirsak Mineral wal 17. |Lontong Empalmeat  Tofu Sirsak Mineral wal
The menu selected are 13 14, _|Lontong Empalmeat  Stir-fry cass... Mango manal... Mineral wal 2. |Rice Chicken soto  Stir-fry cass... Mango manal... Mineral wal
15. |Lontong Empal meat Stir-fry cass... Sirsak Mineral wal
Amount of data will 10 5
e 16. |Lontong Empal meat  Tofu Mango manal... Mineral wa|
17. [Lontong Empal meat Tofu Sirsak Mineral wal
R < > < >

Back To H Time Optimization pi as much 0 hour 0 minute 0 second

FIGURE 3. GUI of the Dinner Menu

In Figure 6, seven colors indicate the menu arrangement based on dates or days. For 30 days, menus are set
based on the date, as shown in the Table 2.

5. Calorie Counts and Menu Data: The number of menus and calorie requirements per serving are detailed
in Table 3.

*The menu list is adjusted according to the calorie needs. **The minimum calorie requirement for dinner is
300, but the data shows a minimum of 324 calories; hence, 350 calories were taken as the minimum.

6. Chromatic Numbers: The chromatic number, indicative of the diet menu’s calorie arrangement, is summarized
in the Table 4 below:

The simulation results underscore the method’s effectiveness in curating diverse menus, focusing on calorie con-
siderations and meal variety.

Result from Vertex-Disjoint Paths of a Graph

This section elucidates the process of selecting menu combinations based on the body’s caloric needs at each meal,
utilizing graph theory concepts. Specifically, "Matching’ in the graph is employed to ensure diverse menu selections

020006-4
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List of Menu Selected Based on Meal Times Point (vertex) Neighbors

vi V2 V3 V4 v Adjacent vertex,  Degree
x - , , - - a V1 |V2,v4, V8 3
X | = 5 5 = [v2 |[v1,va,v8 V3.5
[ 3x |- - - - - [v3|vsvev2 3
X |- B . E B ["va |v1,v2,ve 3
[sx |- - - - - V5 |v3, V2 2
6X |- 5 - 5 - V6 |V3,V8 2
x |- - - - - V7 |ve 1
8X |- = = 5 - V8 |V1,V2,V4,V7..5
| ox
[ 10x |-
v
2Y
3y
4y
[ sv
6Y |- = = = = v
< >
Time Optimization process g as much 0 hour 0 minute 5.544 second

FIGURE 4. GUI with a List of Selected Menus Based on Meal Times

FIGURE 5. Graph of the Menu Arrangement for Eight Days

across different days, while the Depth First Search (DFS) algorithm is used to generate paths representing menu dish
combinations for three daily servings.

1. Menu Determination in Matlab Simulation: In our Matlab-simulated application, menu choices are made
randomly due to the extensive range of possible combinations. The underlying matching analysis explains this
random selection process. The relationship between the number of menus and the required calories per serving,
as presented in Table 3, is formulated as follows:

385 < x1 o xp x3 x4lxs5 ... x108| < 739
3515 < yi y2 y3 ya|ys ... yie2|< 756.5 2
324 < z1 22 3 2|25 ... 216 | < 4575
Where:
* X1,X2,...,X108 is represented 1st until 108th breakfast menu.

* y1,¥2,...,V162 is represented 1st until 162th breakfast menu.

* 21,22,---,216 1S represented st until 16th breakfast menu.

2. Caloric Range and Probability of Menu Selection: Equation (2) is adjustable based on the available menu
options within a specified caloric range. The lines in Equation (2) indicate an attempt to minimize the caloric

020006-5
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TABLE 1. The result of the arrangement menu as long as eight days

The color Node/vertex Consumed

Tosca green V1, V5 Monday1, Tuesday?2

Light blue V6, V2, V7 Wednesdayl, Thursdayl, Friday1
Red \Z Saturday1

Brown V3, V8 Sunday1, Monday?2

e

FIGURE 6. Result of the Menu Arrangement for 30 Days

scope. Further details are provided in Figure 7, where the left-hand value represents the minimum calorie value
from each food serving as per a balanced diet, and the right-hand value denotes the maximum set value. The
probability of selecting a particular menu is depicted in the subsequent equation:

500 < < 600
400 < < 550
350 < < 450

FIGURE 7. Caloric Range and Probability of Menu Selection

3. Illustration of Bipartite Graphs and Menu Combinations: The graph illustrates the probability of menu
selection for each meal. Each vertex in set X is freely paired with vertices in sets Y and Z, without limitations
imposed by the total daily calorie count, as the caloric intake is restricted per serving. This pairing forms two
bipartite graphs, with each combination also representable as a path, exemplified in the following formulas (3):

020006-6
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TABLE 2. The result of the arrangement menu as long as 30 days

The color Node/vertex Consumed

Light yellow V4, V10, V13, V14, V16, V30 The 1st until the 6th day
Red V3, V18, V23, V24, V25, V17 The 7th until the 12th day
Light green V1, V7, V9, V20, V29, V6 The 13th until the 18th day
Dark blue V11, V15, V22, V27 The 19th until the 22nd day
Yellowish green V28, V21, V12 The 23rd until the 25th day
Purple V2,V5,V19 The 26th until the 28th day
Brown V26, V8 The 29th until the 30th day

TABLE 3. The number of menus and calories needed per serving
Menu Amount of data Variety Menu Calories Min_Cal Needed Max_Cal Needed List of Menu*

Breakfast 3,3,3,2,2; (13) 108 385 -1739 500 600 50
Lunch  3,3,3,3,2; (14) 162 351.5-756.5 400 550 88
Dinner  2,2,2,2,1; (9) 16 324 —457.5 350%* 450 13

Day 1| xi1yj1251
Day 2 | xppy j22k2

Day 3 | x;3y 3213 ®
Day n | Xiny jnZkn

4. Application of Depth First Search and Matching: The DFS algorithm facilitates the generation of a path
that represents a sequence of menu combinations for three servings per day. Concurrently, ’Matching’ ensures
that the chosen menu combinations vary daily, whether for breakfast, lunch, or dinner. Through *Matching,’
intersections between elements are avoided, promoting variety in the diet plan.

DISCUSSION

The results from the Matlab simulation, particularly the use of vertex coloring with the Welch-Powell algorithm,
demonstrate a promising approach to personalized and dynamic menu planning. The ability of the simulation to adapt
to user inputs, as indicated by the varied menu options and the flexibility in setting meal plans for different days,
underscores its potential utility in dietary planning. The graphical user interface (GUI) enhances user interaction,
making the process of meal planning more accessible and tailored to individual dietary needs.

The simulation’s capacity to offer a wide range of menu combinations, as evidenced by the GUI outputs for break-
fast, lunch, and dinner, aligns with the principle of a balanced and varied diet. This aligns with nutritional guidelines
advocating diversity in food choices to ensure a comprehensive nutrient intake. The ability to filter and refine menu
options based on calorie content further ensures adherence to dietary recommendations for low-calorie diets, which is
important for weight management and chronic disease prevention.

Applying vertex-disjoint paths in graphs for menu selection reveals an innovative method of ensuring diversity in
meal combinations. The use of Matching’ to vary menus daily addresses the common challenge in meal planning
of repetitive and monotonous diets, which can be a barrier to dietary adherence. The Depth First Search (DFS)
algorithm’s role in generating these paths indicates a robust approach to exploring all possible menu combinations,
enhancing the novelty of each day’s meal plan.

The ability to adjust menu selections based on caloric range and to visualize these choices through bipartite graphs
not only simplifies the complex process of dietary planning but also provides a clear understanding of how different
meals contribute to overall daily caloric intake. This approach is particularly beneficial in managing diets where
caloric control is crucial, such as diabetes or obesity.

The combination of Matlab simulation and graph-theoretical approaches in dietary planning opens new avenues in
nutrition and dietetics. It showcases the potential of integrating technology and advanced mathematical algorithms
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TABLE 4. Chromatic number according to menus selected

Set the day Breakfast Lunch menu Dinner menu Chromatic Time of

menu selected  selected selected number process
10 10 10 10 4 5,544
15 8 10 5 5 1,035
20 15 10 8 5 0,735
25 10 12 5 8 1,298
30 10 10 8 7 1,593

in creating practical, personalized, and varied diet plans. This method also offers a novel tool for dietitians and
nutritionists, potentially enhancing the effectiveness and appeal of dietary interventions.

Future research could explore the integration of more complex nutritional parameters, such as macronutrient ratios
or specific dietary requirements for various health conditions. Expanding the user interface to include more interactive
features and integrating feedback mechanisms could enhance the tool’s utility and user experience. The adaptability
of this approach to different cultural and regional dietary preferences also warrants exploration.

In conclusion, this study demonstrates the efficacy of a graph-theoretical approach in nutritional menu planning,
offering a novel perspective on the intersection of technology, mathematics, and dietetics.

CONCLUSION

This research has successfully demonstrated the integration of graph theory, specifically vertex coloring and vertex-
disjoint paths, with nutritional menu planning using Matlab simulation. The study’s outcomes highlight the potential
of mathematical and computational approaches in revolutionizing dietary planning.

The Matlab simulation, augmented with the Welch Powell algorithm, effectively provided diverse and balanced
meal options, catering to specific caloric requirements. This user-friendly approach, facilitated through a graphical
user interface, allows for personalized and flexible diet planning. The ability to generate varied menus for different
days adheres to nutritional guidelines for a balanced diet and addresses common challenges in meal planning, such as
monotony and rigidity.

Furthermore, applying vertex-disjoint paths in graphs for menu selection has proven to be a novel method for
ensuring diversity and avoiding repetition in meal combinations. This approach is particularly useful for maintaining
long-term dietary adherence, which is crucial in managing health and nutrition-related issues.

The implications of this research are significant for dietetics and nutrition, offering a new tool for dietitians and
nutritionists to create effective, personalized, and varied diet plans. Integrating advanced algorithms and user-friendly
technology in dietary planning opens up new possibilities for personalized nutrition and health management.

In conclusion, this study not only provides a novel approach to dietary planning through the application of graph
theory but also sets a foundation for future research. Further exploration into incorporating more complex nutritional
data and adapting to varying dietary needs and preferences could enhance the utility and reach of this approach. This
study is a testament to the potential synergy between mathematics, technology, and nutrition in advancing health and
well-being.
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