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ABSTRACT Understanding the characteristics of a building after a natural disaster can be achieved using 

image analysis techniques. Among these techniques are the Gray-Level Co-occurrence Matrix 

(GLCM) and Principal Component Analysis (PCA). In the GLCM process, the input image is converted into 

numerical values using eight different angles and varying pixel distances (1 and 0.5 pixels). The resulting 

numerical values from GLCM are then fed into the PCA process to reveal information stored within post-

disaster building images. Interestingly, the PCA results differ between images processed with GLCM at a 1-

pixel distance versus a 0.5-pixel distance. After validation based on surveyor assessments, it was found that 

the valid and accurate representation of real-world image information corresponds to the GLCM results 

obtained with a 0.5-pixel distance, indicating severe damage. This conclusion is supported by the fact that 

PCA results using a GLCM distance of 0.5 produce 2D and 3D visualizations predominantly clustered around 

severely damaged coordinates, with a range of values (n) where n ≥ 2. Therefore, integrating image analysis 

techniques such as GLCM and PCA can be used to determine the level of post-disaster building damage.   

INDEX TERMS Characteristics, Building, Post-Natural Disaster, GLCM, PCA.   

I. INTRODUCTION 

Infrastructure resilience to natural disasters is one of the 

biggest challenges faced by modern society. Disasters such 

as earthquakes, storms, and floods can cause significant 

structural damage to buildings, resulting in huge economic 

losses and, more importantly, loss of human life [1], [2]. 

Therefore, post-disaster structural damage assessment is 

very important to ensure the safety and sustainability of 

building structures. In this context, an integrated approach 

using the Gray Level Co-occurrence Matrix (GLCM) and 

Principal Component Analysis (PCA) offers untapped 

potential in structural damage assessment. Wildeman has 

shown that non-destructive methods such as PCA and 

GLCM can provide valuable insight into the structural 

condition of buildings [3]. In addition, the GLCM-PCA 

integration can be a decision making to determine the level 

of building damage after natural disasters with the latest 

development, in his research, Mohammad Aljanabi 

explained that in civil engineering the latest knowledge to 

determine building damage is found in the decision-making 

stage [4]. According to Aklouche et al. PCA has been used 

extensively in multivariate data analysis to reduce data 

dimensions while retaining most of the information that 

matters [5]. Meanwhile, GLCM, as a texture analysis tool, 

has proven effective in identifying patterns of damage to 

materials [6]. However, integrating these two methods in the 

context of post-disaster structural damage assessment is 

rarely explored. Although there have been advances in 

structural damage assessment techniques, significant 

research gaps remain. Most previous studies have focused on 

using individual methods to detect damage, which are often 

insufficient to capture the complexity of damage incurred in 
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natural disasters [7]. In addition, existing research often does 

not fully use Product Lifecycle Data (PLD) which can 

improve the accuracy of damage assessment [8]. This 

research aims to overcome these shortcomings by integrating 

GLCM and PCA, thus providing a more robust and accurate 

method for post-disaster structural damage assessment. 

Furthermore, this research can also make a significant 

contribution to the field of post-disaster structural damage 

assessment with several innovative aspects: 

1. Combining GLCM and PCA for the first time as an 

integrated method in structural damage assessment, 

provides a new perspective in damage data analysis. 

2. The proposed model promises improved accuracy in 

damage detection, which is critical for emergency 

intervention and post-disaster reconstruction. 

3. Given the large data and computationally intensive 

requirements of the Convolutional Neural Network 

(CNN) method, introducing automation in the damage 

assessment process significantly reduces the time 

required. 

4. Assist stakeholders (the government) in distributing more 

objective assistance with the condition of victims 

affected by natural disasters. 

The content of this article explains the following: the 

background to the use of GLCM-PCA to assess the extent of 

damage to buildings after natural disasters and the use of 

GLCM-PCA in several studies in "Related Works". Then the 

"Method" describes the steps of GLCM-PCA. "Results and 

discussion", describes the experimental process of GLCM-

PCA using Python programming language to assess the extent 

of sector damage after natural disasters and validate results. 

Finally, the "conclusion" summarizes the results of the 

experiment and opportunities for future research.  

 
II. RELATED WORKS 

In their research, Almais et al. explained that the level of 

damage to buildings after natural disasters was 3 clusters, 

namely lightly damaged, moderately damaged, and severely 

damaged by clustering unsupervised data using the PCA 

technique [9]. TABLE I is the result of a review of previous 

related studies and the position of this study.  
TABLE I 

RELATED WORKS TO GLCM AND PCA  

Reference Topic Method Subject 

[10] Structural 

damage 

assessment 

PCA Cross-

correlation 

analysis in a 
data-driven 

approach 

[11] Steel structure 
damage 

detection 

PCA Modal 
frequency 

variation of the 

dynamic test of 
steel structures 

[12] Detection of 

damage to 
plate 

structures 

PCA-FRF Explore PCA-

FRF features 
using 

Unsupervised 

Machine 
Learning 

Reference Topic Method Subject 

[13] Focusing on 

Parkinson's 

disease 

GLCM-PCA Structural 

Analysis using 

GLCM and PCA 
applications 

[14] Structural 

Damage 
Assessment 

Convolutional 

Neural 
Network 

(CNN) 

CNN's 

Effectiveness in 
Assessing 

Earthquake 

Damage 
[15] Structural 

damage 

detection 

GLCM and 

Machine 

Learning 

Comparing 

GLCM with 

machine 

learning 
methods in 

structural 

damage 

detection 

[16] Structural 

health 
monitoring 

PCA and Deep 

Learning 

Integrate PCA 

with Deep 
Learning for 

structural health 

monitoring. 
[17] Detection of 

damage to 

composite 
structures 

GLCM and 

PCA 

Improve damage 

detection in 

composite 
structures by 

using GLCM 

and PCA. 
[9] Clustering 

Data 

PCA Labeling data on 

the level of 

damage to 
buildings after 

natural disasters 

Ours Assessment of 
the extent of 

damage to 

buildings 

GLCM-PCA Characteristics 
of the level of 

damage to 

buildings after 
natural disasters 

 

In the existing literature review, several studies have applied 

GLCM and PCA in different contexts. However, the 

integrated application of both in post-disaster structural 

damage assessment is still limited. The study identified that 

there is still a need to develop a more comprehensive damage 

assessment model, one that does not rely on just one method, 

but integrates various analytical techniques to obtain more 

accurate and reliable results. Therefore, this study seeks to 

fill this gap by proposing an integrated method that harnesses 

the strengths of GLCM and PCA. 

III. PROPOSED METHOD AND DATA PREPARATION 

The methods chapter describes two sub-chapters, namely the 

proposed method and data preparation. The first sub-chapter, 

the proposed method, describes the steps of GLCM and PCA. 

The second sub-chapter, data preparation, describes how to 

obtain data, data parameters or features, and fill in data on 

damage to buildings after natural disasters. 

A. PROPOSED METHOD 

By using input in the form of images of buildings affected by 

natural disasters, then the images enter the GLCM process to 

find out the value of each feature in the GLCM. FIGURE 1 is 

the architecture of the research conducted. 
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FIGURE 1. Our main architecture of the whole paper. 

 

The value of the features in GLCM then enters the 

conversion process to a spreadsheet to be analyzed using 

PCA to find out the clustering of GLCM feature values, the 

results of clustering GLCM features using PCA produce 

clustering of the level of building damage after natural 

disasters based on research by Almais et al. For GLCM-PCA 

integration steps to assess the level of damage to buildings 

after natural disasters in more detail are as follows: 

Step 1: Reading the Image and converting to Grey 
Scale (GS)  
Reading images is often related to visual literacy 

skills, namely the ability to understand, create, and 

communicate meaning from information conveyed in 

the form of images [18]. The conversion to GS 

according to Chen et al. that today gray image 

coloring remains a major task in areas such as 

animated films, medical image processing, and 

various computer vision [19]. GS images are one of 

the data inputs to find out information from an image 

because the size is not heavy and the information 

available is enough to help decide a problem. 

Step 2: GLCM Distance and Angle Value  
GLCM uses a combination of distance and direction 

to analyze an image, so the approach can produce a 

high degree of accuracy in recognizing image patterns 

such as horizontal, vertical, diagonal, checkerboard, 

and color texture calcification [20], [21].  The study 

used distance based on the research of Benco et al. 

which used a distance value (d) of 1 [20], but in this 

study, the comparison experiment used the value of 

d=0.5. So in this study, the results were compared 

using different GLCM distances (d), namely 1 and 

0.5. As for the angular magnitude, Srivastava et al. 

used the reference for their research which explained 

that in GLCM 4 angles can be used, namely 00, 450, 

900, and 1350 with the other 4 angles, namely 1800, 

2250, 2700, and 3150 have the same result [21]. 

However, this study uses 8 angles, namely 00, 450, 

900, 1350, 1800, 2250, 2700, and 3150 for the process 

of finding feature values in GLCM. 

Step 3: Calculate GLCM and extract GLCM result into 
multiple features  
GLCM can extract 8 features significantly 

distinguishing normal and abnormal brain images 

[22]. GLCM can also lighten computation and elevate 

accuracy levels making it more efficient to use for 

real-time pattern recognition applications [23]. 

Step 4: GLCM Feature Results  
The result of the GLCM feature is the values obtained 

from image texture analysis using a grayish-level co-

occurrence matrix. These features include various 

aspects of texture such as contrast, dissimilarity, 

homogeneity, energy, and correlation used for image 

classification, medical analysis, and other pattern 

recognition applications [20], [24].  

Step 5: Convert to Spreadsheet  
The term "Convert to Spreadsheet" is the process of 

converting data from another format into spreadsheet 

form, such as Excel. This is often done to facilitate 

data analysis, especially in research that involves 

collecting and processing large amounts of data [25].  

Step 6: Data Normalization  
Data normalization in PCA (Principal Component 

Analysis) is an interesting topic. In some cases, PCA 

assumes that data input is normally distributed, which 

is not always true in the real world. However, 

applying normalization to input data can change the 

data structure and affect the results of multivariate 

analysis and calibration used in data mining [26], 

[27]. In his research [28] There are six methods to 

standardize data, namely: 

1. Normalization (NR): Changes the data so that it 

has a mean of 0 and a variance of 1. 

2. Standard Scale (SS): Converts data into a z-score, 

with a mean of 0 and a standard deviation of 1. 

3. MinMax Scaling (MM): Converts data into a 

range of 0 to 1. 

4. MaxAbs Scaling (MA): Converts data into a range 

of -1 to 1. 

5. Robust Scaling (RS): Transform data based on 

median and interquartile range. 

6. Quantile Transformer (QT): Converts data into a 

uniform or normal distribution. 

This study uses the Standard Scale (SS) because the 

type of building damage data after natural disasters 
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uses a standard scale, which is 1/2/3. The equation 

from StandartScale (SS) uses the following equation 

(1)  [29]: 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡 =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑥)
 (1) 

Standard deviation using the equation (2) as follows   

[29]: 

�̅� = 
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
    (2) 

Symbol �̅� (X bar) describes the average value of the 

set X.                                                                                                                                                                                                                                                                                                                                                                                          

Step 7: Formation (n) Component PCA  
Principal Component Analysis (PCA) is a commonly 

used dimension reduction technique in signal 

processing. PCA looks for projection matrices that 

minimize Mean Squared Error (MSE) between the 

reduced dataset and the original dataset [30], [31]. 

PCA has a wide range of relevant implementations in 

signal processing and data analysis. 

Step 8: Determination of Variance Ratio and Eigenvalue  
The variance ratio is a measure of the distribution of 

data. The equation to determine the variance ratio can 

use the following equation (3): 

𝑠2 = 
∑ (𝑋𝑖− �̅�)2𝑛

𝑖=1 

(𝑛−1)
    (3) 

Equation (3) has the understanding that the 

distribution of data has a certain size that can 

determine the amount of data distribution. While 

eigenvalue is a value that occupies a place in the 

eigenvector in the form of a matrix [29].   

Step 9: Generate Visualization 2D and 3D Graph of Data 
Normalization Value Based on (n) Component  
Visualization is very important in representing a 

result, especially in PCA results [32]. By using a 3-

dimensional (3D) graph to represent it into a range of 

values whose results illustrate the results in a 2-

dimensional (2D) image.  

Step 10: Creating Labels Based on Graphic Results  
Almais et al. have researched the coordinate value 

(n) on the PCA graph. Based on these studies, we 

can interpret the results as follows [9]: 

1. If the coordinate value PC1 (n) is in the range 

(𝑛 < 0), then the data result label PC1 is lightly 

damaged. 

2. If the coordinate value PC1 (n) is in the range 

(0 ≤ 𝑛 < 2), then the PC2 data result label is 

moderately corrupted. 

3. If the coordinate value PC1 (n) is in the range 

(𝑛 ≥ 2), then the data result label PC1 is severely 

damaged. 

Step 11: Result and Validation  
Results are values that have gone through a certain 

process. To ensure the correctness of the results, 

validation is required [33], [34]. Validation plays an 

important role in determining whether the results 

obtained conform to existing requirements [35]. 

According to Byabazaire et al., validation of results 

can be done by testing two different data sets: data 

trust matrix with model building. The correlation 

between these two records will give the smallest error 

value [36]. Here are the steps to validate the results: 

1. Visualizing PCA results data: visualize PCA 

result data in 2 dimensions and 3 dimensions, 

especially PC1 and PC2 data. 

2. Visualizing original target data that has passed 

surveyor validation: visualize original target data 

that has passed surveyor validation. 

3. Comparing Visualization Results: Compare 2-

dimensional visualization results from PC1 based 

on original target data with 2-dimensional 

visualization results from PC2 based on original 

target data. 

The above steps can be implemented in a complete 

computational procedure using the following algorithm: 

 
Algorithm: GLCM to convert post-disaster building 

images into feature values 

Input: 

• Input data (image) using function imread 

('namafile.jpg')  

• Convert data (image) to Gray Scale using 

function rgb2gray 

Process:  

• Determining distances with values of 1 

and 0.5  

• Define angles with values 00, 450, 900, 

1350, 1800, 2250, 2700, and 3150  

• Extract images into feature values with 

the greycomatrix function  

• Calculate feature values for contrast, 

dissimilarity, homogeneity, energy, and 

correlation using the greycoprops 

function 

Output: 

Displays contrast, dissimilarity, 

homogeneity, energy, and correlation results 

using the print library 

 
Algorithm: Clustering Using PCA for Labeling Data 

Input: 

Data input using function pd.read_csv 

('namafile.csv') 

Process:  

• Data normalization using the 

StandardScaler() and fit_transform() 

functions  

• Generate variance ratio using function 

explained_variance_ratio_()  

• Generate eigenvalue using function 

explained_variance() 

• Generate PCA components using the PCA() 

function 

• Generate dataFrame results of the PCA 

component using function pd.DataFrame() 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469637

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

8 VOLUME XX, 2017 

• Visualization of normalization results 

using scatterplot() 

Output: 

The result of visualization of labeling data 

using PCA using scatterplot() 

 

B. DATA PREPARATION 

Using image data of post-natural disaster sector damage on 

the open data site, namely Kaggle, you can use data directly 

from camera photos, and or Google search engine search 

results. In Kaggle there is data of approximately 100 data on 

building damage after natural disasters that have been 

classified according to the type of natural disaster. In this 

study, for all types of natural disasters, and to determine the 

level of building damage after natural disasters. It does not 

focus on victims of natural disasters and sectors other than 

buildings affected by natural disasters. 

 
IV. RESULT 

The results and discussion explain the GLCM-PCA process 

in determining the structure of building damage after natural 

disasters and test the results with data from experts or 

surveyors to prove that the combined GLCM-PCA can 

determine the structure of building damage after natural 

disasters. 

 
A. Image Reading and Conversion to Grey Scale (GS) 

Reading images is the first step to data input using the 

"imread" Python library. The data is in the form of an image 

that will be converted into a GS image. If the image is already 

GS then the image will be converted into matrix values based 

on the GS image results using the Python library "rgb2gray". 

The image that enters the GLCM process must be in the form 

of matrix values of the GS form. FIGURE 2 is an illustration 

of the process of inputting images into matrix values.   

   

FIGURE 2. The process of converting images to matrix values. 

B. GLCM Distance and Angel Value    

Use 10 combinations of angle changes and 2 distance values 

to find out at what angle and distance to get optimal results. 

Every angle and distance goes through the GLCM and PCA 

analysis stages to determine damage to building structures 

after natural disasters. The distance is usually set at 1 pixel but 

can be smaller or greater than 1 pixel but in this study, it uses 

1 and 0.5 for the distance value while the direction uses angles 

00, 450, 900, 1350, 1800, 2250, 2700, 3150. Changes to angle data 

and distance values are found in TABLE II. 
TABLE II 

CHANGES IN GLCM ANGLE AND DISTANCE VALUES   

Corner (0) 
Distance 

1 2 

0 

1 0.5 

45 

90 

135 

180 

225 

270 

315 

C. Calculate GLCM and Extract GLCM Result Into 
Multiple Features  

The matrix value derived from GS image conversion is then 

combined with several angle values and distance values in 

TABLE II. To generate multiple feature values using the 

"greycomatrix" function. The result will then be the unique 

value present in each GLCM feature. For the source pieces 

used in the process of calculating and extracting GLCM into 

multiple features contained in FIGURE 3 the following: 
 

FIGURE 3. Calculate GLCM and extract GLCM result into multiple 
features 

D. GLCM Feature Results and Convert to Spreadsheet 

The result of calculating and extracting matrix values using 

GLCM is a value of each feature in GLCM based on the 

angle used. This study used 5 types of features, 8 changes in 

angle values, and 2 distance values as shown in TABLE III. 

For this type of feature use contrast, dissimilarity, 

homogeneity, energy, and correlation. The values of each 

feature based on the resulting angle and distance values are 

in TABLE III. 
TABLE III 

GLCM FEATURE VALUE RESULT  

Feature Name Corner (0) Distance Feature Value 

Contrast 

0 
1 0.000104373239 

0.5 0.00010437 

45 
1 0.0000930075743 

0.5 0. 

90 
1 0.000110317919 

0.5 0.00011032 

135 
1 0.00009882 

0.5 0. 

180 
1 0.000104373239 

0.5 0.00010437 

225 1 0.0000930075743 
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Feature Name Corner (0) Distance Feature Value 

0.5 0. 

270 
1 0.000104373239 

0.5 0.00011032 

315 
1 0.00009882 

0.5 0. 

Dissimilarity 

0 
1 0.000104373239 

0.5 0.00010437 

45 
1 0.0000930075743 

0.5 0. 

90 
1 0.000110317919 

0.5 0.00011032 

135 
1 0.00009882 

0.5 0. 

180 
1 0.000104373239 

0.5 0.00010437 

225 
1 0.0000930075743 

0.5 0. 

270 
1 0.000104373239 

0.5 0.00011032 

315 
1 0.00009882 

0.5 0. 

Homogeneity 

0 
1 0.99994781 

0.5 0.99994781 

45 
1 0.9999535 

0.5 1. 

90 
1 0.99994484 

0.5 0.99994484 

135 
1 0.99995059 

0.5 1. 

180 
1 0.99994781 

0.5 0.99994781 

225 
1 0.9999535 

0.5 1. 

270 
1 0.99994484 

0.5 0.99994484 

315 
1 0.99995059 

0.5 1. 

Energy 

0 
1 0.99989273 

0.5 0.99989273 

45 
1 0.99989828 

0.5 0.99994498 

90 
1 0.99988969 

0.5 0.99988969 

135 
1 0.99989537 

0.5 0.99994498 

180 1 0.99989273 

Feature Name Corner (0) Distance Feature Value 

0.5 0.99989273 

225 
1 0.99989828 

0.5 0.99994498 

270 
1 0.99988969 

0.5 0.99988969 

315 
1 0.99989537 

0.5 0.99994498 

Correlation 

0 
1 0.0525793895 

0.5 0.0525793895 

45 
1 0.157848230 

0.5 1. 

90 
1 -0.000055162 

0.5 -0.0000551620021 

135 
1 0.105213745 

0.5 1. 

180 
1 0.0525793895 

0.5 0.0525793895 

225 
1 0.157848230 

0.5 1. 

270 
1 -0.000055162 

0.5 -0.0000551620021 

315 
1 0.105213745 

0.5 1. 

 

E. Data Normalization   

Normalizes the value of the features in TABLE III into a 

value that balances the values in all features. The result of 

data normalization is data that can be transformed into 

balanced data by PCA standards.  The standard of PCA is 

that normalized data can produce an optimal number of PCs. 

FIGURE 4 (a) and (b) are the results of normalization data 

based on GLCM distances. 

 
FIGURE 4.  Data Normalization Results: (a) Distance 1; (b) Distance 0.5 
 

F. Formation (n) Component PCA and Determination of 
Variance Ratio  

Dividing normalized data into PC is an analysis process that 

determines the results of PCA analysis. The right number of 

PCs can determine the optimal analysis results. In their 

research, Almais et al. determined PC can use a range of 

eigenvalue values or variance ratios [9]. In this study, 2 PCs 

were used because 2 PCs had a stable variance ratio value and 

were optimal enough to analyze the results. The results of 

trials using different distances, namely 1 and 0.5, produce 

different variance ratio values. For the variance ratio result 

value based on the distance difference, the GLCM result can 

(a) (b) 
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be seen in TABLE IV, while the form of the graph of the 

variance ratio value in each PC based on the GLCM distance 

value is in FIGURE 5. 
TABLE IV 

CHANGES IN GLCM ANGLE AND DISTANCE VALUES   

Distance PC Value Variance Ratio 

1 

1 97.82% 

2 2.1% 
3 0.0% 

0.5 

1 100.0% 

2 0.0% 
3 0.0% 

 

  

(a1) (a2) 

  

(b1) (b2) 
FIGURE 5. Graph of variance ratio value: (a1) 3 PCs with a distance of 
1; (a2) 2 PCs with a distance of 1; (b1) 3 PCs with a distance of 0.5; (b2) 
2 PCs with a distance of 0.5. 
 

FIGURE 5 is a visual form of the variance ratio value at each 

GLCM distance value. FIGURE 5(a1) and (b1) is a 

visualization of the variance ratio values at GLCM distances 

of 1 and 0.5 with the number of PCs as much as 3. FIGURE 

5 (a2) and (b2) is a visualization of variance ratio data at 

GLCM distances of 1 and 0.5 using 2 PCs. 

G. Generate Visualization 2D and 3D Graph of Data 
Normalization Value Based on (n) Component   

After determining the number of PCs based on the variance 

ratio value, the next step is visualizing 2-dimensional (2D) and 

3-dimensional (3D) data on the PC, so that it is clear the data 

conflict that exists on each PC. FIGURE 6 is a 2D and 3D 

visualization of 2 PCs at each GLCM distance value. 

  

(a1) (a2) 

  

(b1) (b2) 
 
FIGURE 6. Visualization of data distribution on a PC: (a1) 2D data 
visualization distance 1; (a2) distance 3D data visualization 1; (b1) 2D  
data visualization distance 0.5; (b2) 0.5 distance 3D data visualization. 
 

FIGURE 6 (a1) and (a2) are forms of 2D and 3D 

visualization for PC data distribution using a distance at 

GLCM of 1. FIGURE 6 (b1) and (b2) are 2D and 3D 

visualizations for PC data distribution using a GLCM safe 

distance of 0. 

H. Creating labels based on graphic results 

The results of the visualization of the distribution of PC data 

in FIGURE 6 can find out the information if it means using the 

standard value of the level of damage to buildings after natural 

disasters that already exist in their research Almais et al. 

explained that there are 3 levels of damage to buildings after 

natural disasters, namely lightly damaged, moderately 

damaged, and severely damaged [9]. Each of these levels has 

a range of values (n) as in TABLE V.  
TABLE V 

RANGE VALUE (N) LEVEL OF DAMAGE TO POST-DISASTER BUILDING [9]  

Range of Values (n) Damage Rate 

𝑛 < 0 Lightly Damaged 

0 ≤ 𝑛 < 2  Moderate Damaged 

𝑛 ≥ 2 Heavily Damaged 

 

The visualization of the distribution of PC data in FIGURE 

6 can be known by clustering the coordinate points using the 

standard value of the level of damage to buildings after 

natural disasters in TABLE V. The result is that there are 

three clusters in the visualization of PC data distribution at 

every GLCM distance. More details are seen in FIGURE 7. 
  

(a) (b) 
FIGURE 7. Clustering results: (a) Distance 1; (b) Distance 0.5. 
 

In FIGURE 7(a) and (b) there are 3 clusters based on color, 

namely red, orange, and green. Red means severely 

damaged, orange is moderately damaged, and green is lightly 

damaged. Each color has a range of values (n) according to 

TABLE V. The difference between FIGURE 7(a) and (b) is 

the application of GLCM distance, for FIGURE 7(a) uses a 

GLCM distance of 1 while FIGURE 7 (b) uses 0.5. 
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The clustering results in FIGURE 7 can be seen in more 

detail by knowing the coordinate point values PC1 and PC2 

at each angle and GLCM distance. TABLE VI is the value 

of each coordinate based on FIGURE 7 with a GLCM 

distance of 1 and 8 different GLCM angles.  While in 

TABLE VII shows the value of each coordinate in FIGURE 

7 using a GLM distance of 0.5 and an angle of 8 different 

GLCM angles. In addition, TABLES VI and VII also contain 

colors, range values, and labels that explain the level of 

damage to buildings after natural disasters. 
TABLE VI 

COORDINATE POINTS AND DATA LABELS WITH GLCM DISTANCE 1   
Color Cor

ner 

(0) 

Distance 

GLCM 

(pixels) 

Coordinate Point Value Range of 

Coordinate 

Values (n) 

Label 

PC1 PC2 

Orange 0 

1 

1.120509306

6092984 

-

0.210704

33409751

635 

0 ≤ 𝑛 < 2   
Moderate 

Damaged 

Green 45 

-

3.040433906

2487598 

0.063750

26570358

637 
𝑛 < 0 

Lightly 

Damaged 

Red 90 
3.296847377

9787715 

-

0.353090

91014531

39 

𝑛 ≥ 2 
Heavily 

Damaged 

Green 135 

-

0.911535390

2403686 

-

0.075220

92293031

846 

𝑛 < 0 
Lightly 

Damaged 

Orange 180 
1.120509306

6092982 

-

0.210704

33409751

61 

0 ≤ 𝑛 < 2   
Rusak 

Sedang 

Green 225 

-

3.040433906

2487598 

0.063750

26570358

626 

𝑛 < 0 
Lightly 

Damaged 

Red 270 
2.366072601

7808877 

0.797440

89279381

05 
𝑛 ≥ 2 

Heavily 

Damaged 

Green 315 

-

0.911535390

2403686 

-

0.075220

92293031

846 

 

𝑛 < 0 
Lightly 

Damaged 

 
TABLE VII 

COORDINATE POINTS AND DATA LABELS WITH A GLCM DISTANCE OF 0.5   

Color 
Corner 

(0) 

Distance 

GLCM 

(pixels) 

Coordinate Point Value Range of 

Coordinat

e Values 

(n) 

Label 
PC1 PC2 

Red 0 

0.5 

2.110707875

4276776 

0.001802705

9719974018 
𝑛 ≥ 2 

Heavily 

Damaged 

Green 45 

-

2.234357588

4662035 

-0.0000485 𝑛 < 0 
Lightly 

Damaged 

Red 90 
2.357989975

51556 

-

0.001704568

7207842654 
𝑛 ≥ 2 

Heavily 

Damaged 

Green 135 

-

2.234357588

4662035 

-0.0000485 𝑛 < 0 
Lightly 

Damaged 

Red 180 
2.110707875

4276785 

0.001802705

9719971869 
𝑛 ≥ 2 

Heavily 

Damaged 

Green 225 

-

2.234357588

4662035 

-0.0000485 𝑛 < 0 
Lightly 

Damaged 

Red 270 
2.358024627

493897 

-

0.001706691

3292165524 

𝑛 ≥ 2 
Heavily 

Damaged 

Green 315 

-

2.234357588

4662035 

-0.0000485 𝑛 < 0 
Lightly 

Damaged 

 

V. DISCUSSION 

The analysis of PCA results uses the GLCM results in 

FIGURE 2 with 2 changes in different GLCM distances, 

namely 1 and 0.5, resulting in a cluster of PC data 

distribution found in FIGURE 7. In FIGURE 7(a) using a 

GLCM distance of 1, 5 coordinate points are scattered. The 

details of the distribution of the 5 coordinate point values are 

found in TABLE VI, from the number of points that should 

be 8 coordinate points to 5 coordinates means that there are 

coordinate points with the same point values. From the 5 

coordinate points seen in FIGURE 7, they can be clustered 

into 3 clusters of post-natural disaster damage levels, namely 

2 values of the coordinate point entering the lightly damaged 

cluster (green), 1 value of the coordinate point entering the 

moderately damaged cluster (orange), and 2 values of the 

coordinate point entering the heavily damaged cluster (red). 

Meanwhile, by using a GLCM distance of 0.5, there are 4 

coordinate points. Details for the coordinate point value are 

found in TABLE VII, from the number of points that should 

be 8 coordinate points in FIGURE 7(b) it can be seen that 

there are only 4 coordinate points because the other 4 

coordinate points are the same. From the 4 coordinate points 

in the data cluster using a GLCM distance of 0.5, 3 clusters 

of building damage levels after natural disasters were 

produced, namely 1 coordinate point value in the lightly 

damaged cluster (green), no value at the coordinate point in 

the moderately damaged cluster (orange), and 3 coordinate 

values in the heavily damaged cluster (red). TABLE VIII is 

the total coordinate point data from the cluster analysis using 

PCA. 
TABLE VIII 

 THE NUMBER OF COORDINATE POINTS OF PCA CLUSTERING RESULTS 
GLCM 

distance 

(pixels) 

Coordinate Point Number of 

coordinate 

points 

Color 

Value 

Range 

(n) 

Label 
PC1 PC2 

1 

1.120509

30660929

84 

-

0.210704334

09751635 

2 Orange 
0 ≤ 𝑛 
< 2   

Moderate 

Damaged 

-

3.040433

90624875

98 

0.063750265

70358637 
2 Green 𝑛 < 0 

Lightly 

Damaged 

3.296847

37797877

15 

-

0.353090910

1453139 

1 Red 𝑛 ≥ 2 
Heavily 

Damaged 

-

0.911535

39024036

86 

-

0.075220922

93031846 

 

2 Green 𝑛 < 0 
Lightly 

Damaged 

2.366072

60178088

77 

0.797440892

7938105 
1 Red 𝑛 ≥ 2 

Heavily 

Damaged 

0.5 

2.110707

87542767

76 

0.001802705

9719974018 
2 Red 𝑛 < 0 

Heavily 

Damaged 

-

2.234357

58846620

35 

-0.0000485 4 Green 𝑛 < 0 
Lightly 

Damaged 

2.357989

97551556 

-

0.001704568

7207842654 

1 Red 𝑛 ≥ 2 
Heavily 

Damaged 

2.358024

62749389

7 

-

0.001706691

3292165524 

1 Red 𝑛 ≥ 2 
Heavily 

Damaged 

 

FIGURE 8 is a visualization of the distribution of data in 

TABLE VIII which is a comparison of the values of PC1, 

PC2, and GLCM 1 coordinate points. 
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FIGURE 8. The distribution of data at the coordinates of PC1 and PC2 is 
based on the distance of GLCM 1 

 

In FIGURE 9 is a visualization of the distribution of data in 

TABLE VIII which is a comparison of the values of PC1, 

and PC2 coordinate points and a GLCM distance of 0.5. 
 
 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 9. The distribution of data at the coordinates of PC1 and PC2 is 
based on the GLCM distance of 0.5 

 

FIGURES 8 and 9 have 3 different color clusters, namely 

green, orange, and red. According to Almais et al. explained 

that clustering the level of building damage after a natural 

disaster has 3 types of colors, namely green (lightly 

damaged), orange (moderately damaged), and red (severely 

damaged) [9]. The results of FIGURES 8 and 9 are also the 

results of visualization of data distribution which has 

different meanings if in FIGURE 8 there are 2 green dots of 

coordinates, 1 orange dot of coordinates, and red dots of 2 

coordinate points. Meanwhile, in FIGURE 9 there are 1 

coordinate point in green, 0 coordinate points in orange, and 

2 coordinate points in red. So FIGURE 2 means lightly 

damaged and severely damaged because the number of 

coordinate points in the cluster of lightly damaged and 

severely damaged buildings is the same, namely 2 coordinate 

points. In FIGURE 9, it is understood that in FIGURE 2 the 

level of damage to the building is severely damaged because 

the number of coordinate points in the cluster of the damage 

to the disaster building is more than in other clusters. 

Validation based on existing studies can be used to validate 

the results of FIGURES 8 and 9 by the actual situation. The 

following are the validation results of several studies that 

address the same thing but with different models or 

completion techniques. 

1. According to Bachriwindi et al. explained that to 

determine the level of damage to buildings after natural 

disasters, 5 criteria can be used, namely the condition of 

the building, the state of the building structure, the 

physical condition of the building, the function of the 

building, and other supporting conditions [2]. Then the 5 

criteria are included in the process of the Multi-Criteria 

Decision Making (MCDM) method, namely Weighted 

Product (WP) to find out the alternatives. There are 3 

types of alternatives, namely lightly damaged, 

moderately damaged, and severely damaged. Validating 

FIGURE 2 based on their research by Bachriwindi et al. 

is to know the alternatives of the image based on 5 

existing criteria with a value range of 1 (lightly 

damaged), 2 (moderately damaged), and 3 (severely 

damaged) [2]. FIGURE 2 is based on the first criterion, 

namely the condition of the building has a scale of 

interest, a heavy scale of interest, a scale rating collapsed, 

and a damage value of 3.  FIGURE 2 is based on the 

criteria for the condition of the building that the building 

has collapsed. The second criterion is the condition of the 

building structure has a scale of interest weight, the scale 

rating most buildings are damaged, and the damage value 

is 3. In FIGURE 2, based on the criteria for the state of 

the building structure, the structure of the building 

(columns, walls) has been mostly damaged. The third 

criterion is that the physical condition of the building has 

a scale of interest weight, a scale rating of >50%, and a 

damage value of 3. So in FIGURE 2 based on the criteria 

for the physical condition of the building, the building 

has collapsed or collapsed by more than 50%. The fourth 

criterion is that the function of the building has a heavy 

scale of interest, a dangerous scale rating, and a damage 

value of 3. In FIGURE 2, based on the criteria for 

building functions, it has been seen as dangerous for 

residents affected by natural disasters because many 

building structures have collapsed and collapsed. The 

fifth criterion is that other supporting conditions have a 

heavy scale of interest, a scale rating of total damage, and 

a damage value of 3. Based on the criteria of other 

supporting circumstances, FIGURE 2 has been 

completely damaged because the roof of a large area has 

collapsed, and the pillars, walls, doors, and roof have also 

collapsed or collapsed. In his research Bachriwindi et al. 

after all the values of building damage in each criterion 

are known, the next step is to determine alternative levels 

of building damage using the WP method. After the WP 

method process, the value of the 3 alternatives is known, 

then the value of the 3 alternatives is ranked to find out 

the highest score of each alternative to get the optimal 

alternative [2]. In this case, the highest alternative value 

is the heavily damaged alternative. 

2. According to Almais et al., using the same method as his 

research, Bachriwindi et al. but different from another 

type of MCDM method, namely TOPSIS [37].  Based on 

their research, Almais et al. the results of FIGURE 2 are 

included in the heavily damaged alternatives, because the 
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TOPSIS method is one of the methods of MCDM, so if 

in their research Bachriwindi et al. using the WP method 

produces heavy damage, then the TOPSIS method also 

produces heavily damaged alternatives. Only the final 

result value of each alternative will be different on the 

WP and TOPSIS methods but the ranking of the 

alternatives is the same. 

3. Based on their research, Almais et al. used a prediction 

model by applying the Neural Network (NN) method to 

predict the level of building damage after natural 

disasters [38], in FIGURE 2 including the types of 

clusters of building damage levels after natural disasters 

that are severely damaged. According to Almais et al., if 

the 5 criteria for determining the level of damage to 

buildings after a natural disaster have a value of 3, then 

the meaning is heavy damage [38]. The process in Almais 

et al.'s research to intelligently assess the level of 

building damage after natural disasters is to apply the 

Neural Network Forwardpropagation (NNFP) method to 

predict the level of building damage after natural 

disasters using training data derived from the TOPSIS 

method process. Then the training data was tested using 

testing data based on new data from surveyors. 

From the validation results of 3 existing studies, valid 

validation results have been obtained that FIGURE 2 is 

included in the cluster of severely damaged buildings. So the 

results of the surveyor's validation are by the results of the 

PCA analysis using the GLCM distance of 0.5 because, in 

2D and 3D visualization, the results of the PCA analysis at 

the GLCM distance of 0.5 produce more or dominant 

coordinate point values in the cluster of the level of damage 

to severely damaged buildings (in red). From the results of 

the study, it has been proven to find information on the level 

of building damage after a natural disaster on a building with 

images that can be lighter and faster using the integration of 

the GLCM-PCA method compared to the CNN method. 

Because by using the GLCM-PCA method integration, it 

does not require a lot of data and high computing. As in his 

research, Kumar et al. needed a lot of data and high 

computing because they applied CNN for brain segmentation 

classification with image data of 514 images for 233 patients 

and 3064 images for 73 patients using a 25-layer CNN model 

[39]. 

Meanwhile, in the integration process of the GLCM-PCA 

method, it is possible to find out the information of an image 

by looking for the feature values in each image using GLCM, 

then the feature values of each post-natural disaster building 

image enter the PCA process to find out the distribution of 

feature values on the x and y axis graphs. To analyze the 

results of PCA, we can use the reference standard for the 

coordinate value of the post-disaster building damage level 

in the research of Almais et al. which explained that there are 

3 clusters of post-natural disaster building damage levels, 

each of which has its coordinate value [9]. The results of the 

PCA analysis in the form of labels and clustering coordinate 

values for the level of building damage after natural disasters 

are found in TABLE VIII Based on the results of the study, 

it is known that to find out the information in an image in 

addition to using the CNN method which requires a lot of 

data and high computing, it is possible to use the integration 

of the GLCM-PCA method. 

However, to implement the integration of the GLCM-PCA 

method, it is necessary to first have a clear standard in the 

previous study that explains the standard coordinate values 

in each cluster using PCA in the same case, to get maximum 

results and get the actual image information. 

VI. CONCLUSION 

Determining the level of damage to buildings after natural 

disasters using image input of buildings affected by disasters 

can use the integration of digital image analysis techniques, 

namely GLCM and PCA. GLCM images in the form of 

numerical data can be known information using image 

analysis techniques, namely PCA. PCA can cluster a data set 

based on its parameters or attributes to know the information. 

As a result, images that enter the GLCM process are 

distinguished into 2, namely images using distances of 1 and 

0.5. In the PCA process, GLCM results using different 

distances also have different results. From the PCA analysis 

using 2D and 3D visualization the GLCM results using 

distance 1 produce different results from the results of the 

surveyors, but by using the GLCM distance 0.5 the results 

are the same as the surveyors, which are severely damaged.  

If you look at the results of the variance ratio value in the 

PCA process using GLCM distances of 1 and 0.5, it produces 

a stable variance ratio value in the PCA process using GLCM 

1 distance. However the PCA clustering results do not match 

the surveyor, that is, the distribution of data is identical to all 

clusters, so they cannot know the information in the picture. 

Based on this, the results of PCA analysis techniques are not 

only seen from the stability of the variance ratio value but 

the results of 2D and 3D visualization of the distribution of 

data from PCA analysis can find out the information stored 

in a digital image input. So in the future to find out the 

information on an image can use the integration of image 

analysis techniques, namely GLCM and PCA. In the future, 

it is possible to develop the integration of GLCM and PCA 

not only to determine the level of damage to buildings after 

natural disasters but also to find information from a picture 

in all areas of life. In addition, it can develop in terms of 

integration with the CNN method but must be prepared with 

adequate high computing needs. For further research 

development by adding image augmentation techniques to 

improve image quality and avoid potential biases such as 

varying image quality, types of natural disasters, and 

different building materials. 
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