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Abstract

Background: Klebsiella pneumoniae communicate between and
among species using quorum sensing (QS). Biofilm formation and
virulence factors are regulated by QS. This QS is indirectly responsible
for K. pneumoniae pathogenicity. Inhibiting QS is a novel and highly
effective method for controlling K. pneumoniae extended-spectrum
beta-lactamases (KP-ESBL) infections. This study aimed to investigate
how Aspergillus oryzae extracellular protein (AOEP) affected QS and KP-
ESBL virulence factors.

Methods: Methods used included minimal inhibitory concentration
(MIC) through the microdilution method, biofilms with crystal violet
staining, extracellular polysaccharides using the Congo Red assay,
quantifying the expression of genes coding for capsular
polysaccharide (wzI gene) and adhesion (mrkA gene) through
guantitative reverse-transcription polymerase chain reaction (RT-
gPCR), siderophore level measurement using Chrome Azurol
sulphonate assay (CAS assay), biofilm morphology using a scanning
electron microscope (SEM), and confirmation using the life span killing
assay method on Caenorhabditis elegans (C. elegans).

Results: In vitro studies revealed that AOEP inhibited biofilms and
exopolysaccharides (EPS) in KP-ESBL at the sub-MIC level. In addition,
AOEP inhibited the expression of the mrkA gene, which is involved in
the adhesion process. Furthermore, an in vivo study revealed that
AOEP levels of 75 and 150 pg/mL respectively increased C. elegans
survival rates by 72.67% and 80.76% against K. pneumoniae infection.
Conclusions: Our findings suggest that the extracellular protein of A.
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oryzae may be an effective QS inhibitor and a novel anti-virulence
agent to control bacterial pathogens.
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Introduction

The severity of infectious diseases caused by bacterial strains that are resistant to treatment has made their advent a global
problem today, including Klebsiella pneumoniae extended-spectrum beta-lactamases (KP-ESBL).! KP-ESBL can
hydrolyze beta-lactam antibiotics in addition to producing biofilms that hinder medications from penetrating cells.”
Biofilms comprise an extracellular matrix (polysaccharides, proteins, and extracellular doxyribonucleic acid [DNA]) that
acts as a strong barrier for bacteria and makes them more resilient to environmental stress than planktonic cells.’
Additionally, biofilms aid KP-ESBL in spreading the infection and provide an environment that fosters the development
of antibiotic resistance.” Finding novel compounds that can suppress KP-ESBL virulence factors and biofilms is
therefore urged in order to assist in fighting these bacteria.

Quorum sensing (QS) molecules, adhesion molecules, iron, and exopolysaccharides (EPS) can affect the formation of
biofilms.”~” Because QS is a regulator for the expression of capsule polysaccharides, the development of this biofilm is
inversely related to the polysaccharide capsule's virulence factor.'’ It is now crucial to find antibiofilm and antivirulence
chemicals, especially those derived from natural sources. Biofilms have been shown to be inhibited by bioactive
substances obtained from nature.''~'*

Aspergillus sp., a filamentous fungus, is well known for its potent antibacterial properties.'>~'” Inhibition of virulence
factors and direct harm to the K. pneumoniae are known antibacterial mechanisms of Aspergillus sp. However, little is
known about Aspergillus sp ability's to combat KP-ESBL biofilms. Our preliminary research proves Aspergillus
crude protein which has the greatest biofilm inhibition is Aspergillus oryzae extracellular crude protein (AOEP).
The aim of this study was to evaluate any potential antibiofilm properties of Aspergillus oryzae extracellular protein
against KP-ESBL.

Methods

Preparation of Klebsiella pneumoniae extended-spectrum beta-lactamases, Aspergillus oryzae and
Caenorhabditis elegans

KP-ESBL (ID.100029) were obtained from the Laboratory of Microbiology, Faculty of Medicine, Brawijaya University,
Malang, Indonesia. Luria Broth (LB) medium was used to cultivate the KP-ESBL strain, which was then incubated at 37°C
for 16-18 hours. Sterile saline was diluted 100 times after being equalized with the Mc. Farland standard to produce a
concentration of 106 CFU/mL. This bacterial suspension was then ready for testing. The fungal strain Aspergillus oryzae
was provided by the Indonesian Culture Collection (Ina-CC). Preparation of Aspergillus oryzae begins with sub-culture and
preservation of previously isolated Aspergillus oryzae. Sub-cultures were carried out from cryo to Luria Bertani solid
medium. The culture was then treated in the form of H,O, and without glucose, then stored at 37°C in an incubator. The
nematode Caenorhabditis elegans was maintained on agar medium for nematode growth media (NGM) fed with Eschericia
coli OP50. Gravid C. elegans were treated with hypochlorite to synchronize C. elegans culture at the first larval stage.
Before being employed for infection, the C. elegans were then reared at 25°C until they reached the young adult stage.

Preparation of Aspergillus oryzae extracellular protein (AOEP)

100 mL of potato dextrose broth (PDB) medium were inoculated with 8-mm (diameter) Aspergillus oryzae mycelium
and placed in a 250 mL Erlenmeyer flask containing 2% glucose. The flask was incubated for 72 hours at 27°C in a shaker
incubator under static conditions (OD600 = 1.2). The culture was filtered using 0.22-micron filter paper after incubation
(Whatman, Sigma Aldrich). As a source of extracellular protein, the supernatant was centrifuged at 12.000 rpm for
15 minutes at 4°C. Ammonium sulfate was used to precipitate extracellular proteins at saturation values of 80%. After one
hour of stirring in the ice bath, ammonium sulfate was added to the supernatant. The crude protein extract was centrifuged
at 4°C for 15 minutes at 12,000 rpm the next day after being maintained at 4°C overnight. After that, the complete protein
precipitate underwent a twenty four hour-dialysis in a 0.01 M phosphate buffer at pH 7 using a 10 x-sample volume. After
that, the Aspergillus oryzae extracellular protein (AOEP) was prepared for the assay.

Determination of MIC

A growth inhibition test was conducted using microdilution broth. Briefly, fresh cultures were inoculated on LB medium
at turbidity equivalent to 0.5 McFarland standard, 500 pL of each bacterial culture were added to a 96-well polystyrene
flat-bed microtiter plate. The samples were added to the bacterial suspension in each well at final concentrations ranging
from O to 150 g/mL. The growth control wells only contained bacteria on LB media and kanamycin as positive control.
Double serial dilution of the Aspergillus oryzae extracellular protein (AOEP) tested sample was made starting from
the first well by adding 50 pL of the tested sample, dissolved at 150 pg/mL. After incubation at 37°C for 24 hours, the
absorbance was measured at 600 nm. The lowest absorbance value of the sample that could reduce more than 90% of the
absorbance of the negative control was recorded as the MIC value. All experiments were performed in triplicate.
Minimum bacterial concentration (MBC) for each sample was calculated by coating the contents of the first three wells,
which showed no visible bacterial growth on the LB plate, and incubated for 24 hours.
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Biofilm assay

The test well on a 96-well microplate received a total of 100 pL of Aspergillus oryzae extracellular protein (AOEP) at
various concentrations (18.75, 37.5, 75, and 150 ug/mL). The negative control wells received 200 pL of mixed LB media
and 1% glucose, while the positive control wells received 64 pug/ml of kanamycin. Each well was then filled with 100 uL
of the KP-ESBL suspension. For 24 hours, the microplate was wrapped and kept at 37°C in an incubator. The microplate's
contents were taken out the following day, thoroughly cleaned with sterile distilled water three times, and then dried.
200 pL of 0.1 % crystal violet dye was added to each well once the microplate had dried, and it was air dried at room
temperature for 15-20 minutes. The microplate's contents were then cleaned with sterile distilled water and dried. After
15 minutes of incubation at room temperature, 200 uL of a 96% ethanol solution were added to each well, and the results
were measured at 570 nm with a microplate reader.

Biofilm growth inhibition was calculated using the following formula:

ODcontrol — OD test x 100%

biofilm adhesi tion =
Jobiofilm adhesion prevention ODcontrol

(OD Control = Optical density control negative. OD Test = Optical density test)

Analysis of biofilm structure using SEM

Visual evaluation of AOEP's impact on KP-ESBL morphology was conducted using a scanning electron microscope
(SEM, model Zeiss 224 EVO 50 VP, Germany). KP-ESBL bacteria were cultivated in LB broth and incubated for
24 hours in an aerobic environment at 37°C. A 1-mL volume of the bacterial suspension was obtained and treated with
AOQEP for two hours once it reached around 1x10® CFU/ml. Another 1 mL sample was taken from the culture and left
untreated. These two bacterial samples were centrifuged after two hours for three minutes at 1400 rpm, and the pellets
were then cleaned twice with 0.1 M phosphate buffer saline (PBS). KP-ESBL cells were exposed to 2.5% glutaraldehyde
for two hours at 4°C for the SEM analysis. Samples were exposed to each concentration after fixation for one to two
minutes in order to dehydrate them. The samples were then centrifuged at 1400 rpm for 10 min, after which the pellets
were re-dispersed in 100% ethanol and air dried. The samples were coated with gold and palladium in an 80:20 ratio prior
to examination under SEM at 20 kV. The working magnification was kept at less than 10 mm for better focusing.

Production of cell-free EPS

Cultures of bacterial isolates left overnight were inoculated to 9.5 mL of LB broth along with 0.5 mL of cell lysate and
incubated at 30°C for 24 hours. The late-log phase cells attached to the test tube walls were harvested by centrifugation at
8500 rpm for 30 min at 2°C. The filtered supernatant was added with three volumes of cold ethanol and incubated
overnight at 2°C to precipitate the released EPS. The precipitated EPS were then collected by centrifugation at 5000 x g
for 30 min and dissolved in 1 mL of deionized water. Enzyme-free media culture added with PBS served as a control. The
bacterial cells were removed, resuspended in sterile PBS, and read at 600 nm. The collected EPS was quantified using the
phenol-sulfuric acid method.

C. elegans life span killing assay

Similar to the anti-infection screen, the liquid-based survival test was carried out with a few minor adjustments. A total of
30 young adult C. elegans were used in place of the N2 young adults that received treatment. As a result, the C. elegans
were kept at 16°C to create gravid C. elegans, and they were given a hypochlorite treatment to develop eggs. In order to
conduct an infection assay, eggs were sown on NGM agar and developed into sterile young adults of C. elegans at 25 °C.
Every four hours following infection, both alive and dead C. elegans were counted. Each extract was examined in three
wells, each representing about 100 C. elegans. In control wells, dimethyl sulfoxide (DMSO) was used in place of the
extract, and Escherichia coli OP50 were fed. To examine the impact of AOEP on KP-ESBL pathogenicity to C. elegans,
we performed a slow-killing survival experiment. On a 48-well microplate, KP-ESBL were first cultured for an overnight
period at 37°C in the presence of AOEP (18.75, 37.5, 75, and 150 ug/mL). When 100 sterile young adult C. elegans were
putinto the well, the infection began. KP-ESBL was given DMSO treatment as a negative control in place of AOEP. After
48 hours, the C. elegans that were still alive were counted under microscope with a magnification of 100 x.

RT-gPCR analysis

The hot phenol method was used to extract total ribonucleic acid (RNA), where the DNA was removed using TURBO
DNA-free (Ambion, Inc.), and the RNA quality was determined using a NanoDrop (ND-1000; Thermo Scientific) and an
Agilent 2100 bioanalyzer with a Picochip (Agilent Technologies). After 35 qPCR cycles, the absence of contaminating
DNA was determined by the absence of amplification products. A 1 pg of RNA, random hexamer primers (0.2 pg/L),
and M-MulV-RT (20 U/L, Moloney murine leukemia virus reverse transcriptase; Thermo Fisher Scientific) were
used to synthesize ¢cDNA. Specific primers for mrkA 5-CGGTAAAGTTACCGACGTATCTTGTACTG-3/, and
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wzl 5'-GCTTAYGCRGCYGGGTTAGTRGT-3' designed with the Primer3Plus software (Primer3Plus is an open
alternative). A master mix of the following components was prepared for light cycler reactions: 3.0 mL PCR-quality
water, 1.0 uL (10 M), 10 uL 2x SYBR Green I Master Mix, 10 pL reverse primer, and 5.0 uL cDNA (50-100 ng). A
multi-well plate was sealed with sealing foil, centrifuged for two minutes at 1500 g, and loaded into the LightCycler
480 instrument (Roche). For each sample examined, amplification was carried out in triplicate wells. All reactions had
control reactions with no template (water) and minus-reverse transcriptase (RNA). Cycling conditions were as follows:
denaturation (95°C for 10 minutes); amplification and quantification repeated for 45 cycles (95°C for 10 seconds, 57°C
for 20 seconds, 72°C for 30 seconds with a single fluorescence measurement); melting curve (95°C for 10 seconds, 65°C
for one minute with continuous fluorescence measurement at 97°C); and finally, a cooling step at 40°C for 10 seconds.
After each run, a melting curve analysis was performed to confirm the specificity of the primers. For normalization, 16S
rRNA was used as a reference gene, and relative gene expression was calculated using the 2Ct method.

Results

AOEP inhibited the growth of KP-ESBL

The antimicrobial activity of AOEP was quantitatively assessed by measuring the turbidity at a wavelength of 600 nm.
The results in Figure 1 represent crude proteins’ MIC and MBC values in various concentrations with kanamycin as
positive control. The concentration of AOEP, which could inhibit > 90% of the bacterial population, represented MIC and
was 300 pg/mL. The concentration used in the growth inhibition test of antibiofilm activity was sub-MIC, namely at 1/8
and 1/16 x MIC. This study used a 64-ug/mL dose of kanamycin as a positive control.

The highest concentration used for the AOEP inhibition test against KP-ESBL biofilms was 150 pg/mL, which was the
MIC (p-value < 0.05). The Tukey Post Hoc test showed that there were significant differences between the overall
treatment group and the negative control. The linear regression test results showed a R-value of 0.797, reflecting that
AOEP could inhibit the growth of KP-ESBL in a dose-dependent manner. Furthermore, measurement of the inhibitory
ability of biofilms and virulence factors used sub-MIC concentrations of 1/8 and 1/16 MIC, there were 18.75, 37.5,
75, and 150 pg/mL.

AOEP inhibited the formation of KP-ESBL biofilms at MIC
The microdilution method was used to test the inhibitory activity of the AOEP biofilm against KP-ESBL. Figure 2
displays the AOEP biofilm's inhibitory efficacy against KP-ESBL.

AOEP was administered relative to the MIC. The MIC value of the K. pneumoniae strain was 300 pg/mL, so the highest
concentrations for the anti-biofilm test were 1/8, 1/16 MIC. The biofilm inhibition value [100-(sample ABS/control
ABS x 100)] for each AOEP concentration can be seen in Figure 2. In the crystal violet staining assay, KP-ESBL biofilms
were significantly inhibited at concentrations of 1/4 x MIC (75 pg/mL) and 1/2 x MIC (150 pg/mL) (p < 0.05).
Interestingly, AOEP inhibited biofilm formation at concentrations below the MIC. The ability of AOEP to inhibit biofilm
formation in KP-ESBL exceeded the ability of the kanamycin (69.46 ug/mL and 37.9 pg/mL). The positive control had a
biofilm inhibitory value of 37%, which was lower than the AOEP biofilm inhibitory level of 150 and 75 pug/mL. The
negative control (KP-ESBL bacteria without AOEP exposure) showed the lowest biofilm inhibition value (0), which

MIC (% negative control)

Control+  Control- 75 pg/ml 150 ug/ml 300 pg/ml 600 pg/ml

Concentration of AOEP (ug/mL)

Figure 1. Minimal inhibitory concentration (MIC) of Aspergillus oryzae extracellular protein (AOEP) against
Klebsiella pneumonia extended-spectrum beta-lactamases (KP-ESBL). MIC at a concentration of 300 pg/mL was
92.74% (bold). Kanamycin as a positive control, was only able to inhibit KP-ESBL 78.51%. The negative control of
KP-ESBL without AOEP exposure was 0%. Bars indicate the standard error, and the sign (*) above the bars indicates a
significant difference (p < 0.05).
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Figure 2. Inhibition of Aspergillus oryzae extracellular protein (AOEP) against Klebsiella pneumonia extended-
spectrum beta-lactamases (KP-ESBL) biofilms. Inhibitory effect of AOEP on biofilms after co-incubation for 24 h
with different concentrations of AOEP. The concentration of AOEP is given relative to MIC KP-ESBL. The AOEP biofilm

inhibition concentrations of 18.75, 37.5, 75, and 150 pg/mL were 32.94%, 39.17%, 68.14%, and 72.18%, respectively.
Bars indicate the standard error, and the sign (*) above the bars indicates a significant difference (p < 0.05).

60,00

50,00 el
40,00 o

30,00
20,00

10,00

Cell free EPS inhibition (% negative
kontrol)

0,00
Control +  Control - 18.75 37.5 75 150

Concentration of AOEP (ug/mL)

Figure 3. Reduction of Aspergillus oryzae extracellular protein (AOEP) against cell-free Klebsiella pneumonia
extended-spectrum beta-lactamases (KP-ESBL) exopolysaccharide. Inhibitory effect of AOEP on cell-free exopo-
lysaccharide KP-ESBL after being incubated together for 24 hours with different concentrations: 18.75, 37.5, 75, and
150 g/mL. Bars indicate the standard error and the sign (*) above the bars indicates a significant difference (p <0.05).
KP-ESBL

indicated that biofilm production was not inhibited at all. When administering the four concentrations of AOEP, the
resulting OD value decreased significantly as the dose increased when compared with the OD of the negative control.
This indicates AOEP inhibition of the KP-ESBL biofilm. Tukey test results indicated that there were significant
differences between the overall treatment group against the negative control. The linear regression test results show
that the R-value (0.957) that represented AOEP could inhibit the growth of KP-ESBL biofilm in a dose-dependent
manner.

AOEP reduced cell-free exopolysaccharide of KP-ESBL
The assay was performed to test the ability of AOEP to reduce cell-free exopolysaccharide KP-ESBL.

KP-ESBL treated with AOEP 150 ug/mL could reduce the bond matrix with Congo Red dye by as much as 49% after
staining and assessment with a spectrophotometer. As the dose of AOEP was reduced (75 ug/mL, 37.5 pg/mL, 18.75 pg/
mL), its inhibition ability decreased (42%, 38%, 37%). Cell-free EPS might be reduced by 19% using AOEP 150 pug/mL
and it surpassed the kanamycin (30 %). There was a significant difference, according to the one way ANOVA test (p-
value < 0.05). The results of the Tukey Post Hoc test revealed that the overall treatment group and the unfavorable control
group differed significantly. The findings of the linear regression test indicated that AOEP might inhibit the cell-free EPS
KP-ESBL in a dose-dependent manner, and the R-value for this test was 0.896.
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AOEP disrupted fimbriae through downregulation of the merized fimbrial shaft (mrkA) genes

The delta-delta Ct method (2 DDCt) was used to quantify RT-qPCR results. Results are represented as “Target/adh3 fold
change.” The results of gene expression analysis via RT-qPCR (Figure 4) showthat AOEP downregulated the gene
expression for fimbriae mrkA, which acts as an adhesion molecule. Meanwhile, capsular EPS as measured by the wz/ gene
expression was increased.

AOEP disturbed the biofilm structure of KP-ESBL on observation under SEM

The impact of AOEP on cellular alterations was examined using SEM analysis. To supplement the information of the
quantity of the biofilm, observation of the architecture of the biofilm mass using SEM was conducted. The impact of
AOEP on the KP-ESBL biofilm structure was demonstrated by SEM data (Figure 5).

The negative control group showed bacterial colonies along with thick biofilms evenly distributed on the adhesion surface
(Figure 5A). This was different from when the bacteria were treated with the 150 ug/mL AOEP (Figure 5B), the cells failed
to aggregate, and there was a highly significant decrease in biofilm mass. In this group, the bacterial colonies were separated
and became planktonic bacteria, and the adhesion surface was free of bacterial biofilms. Biofilm mass was also decreased in
the AOEP 75 pg/mL (C) group, while the positive control group (Kanamycin, F) showed partial inhibition of the KP-ESBL
biofilm. It can be seen that the biofilm structure of KP-ESBL was impaired due to the addition of AOEP when compared to
the control. The control group was KP-ESBL which was not exposed to AOEP, as shown in Figure 5A. When bacteria stick
together, the attachment of bacteria is more clearly facilitated by a thick mass of biofilm surrounding the bacterial colony. In
this group, the biofilm appeared to cover all bacterial colonies on the surface of the adhesion medium. This appearance
differed significantly from the group treated with 150 ug/mL of AOEP (Figure 5B) provides a clearer picture of the dispersal
in the bacterial colonies treated with AOEP reflecting the impair the biofilm. The inhibition of biofilm mass formation in the
group exposed to AOEP at a dose of 75 pg/mL (Figure 5C) also shows that the bacterial colony dispersed. However, the
number of bacteria was higher than for a concentration of 150 ug/mL. At an AOEP dose of 37.5 pg/mL (Figure 5D), it was
seen that some bacteria were separated, and some bacteria were attached (left). At 10000x magnification, a biofilm mass
began to surround the bacteria and facilitated adhesion between bacteria and the adhesion medium.

Meanwhile, at the lowest concentration of AOEP, a dose of 18.75 pg/mL (Figure SE), the presence of a thick biofilm was
seen that matched the negative control. Interestingly, the sub-MIC ability of AOEP to reduce biofilm mass formation
produced stronger effect than the kanamycin (Figure 5F). Overall, SEM results showed the highest reduction in biofilm
mass formation occurred with a treatment of AOEP 150 pg/mL, which had a stronger effect than the kanamycin. These
results indicate that AOEP can be used as a candidate antibiofilm agent at concentrations lower than MIC, especially
against biofilm formation by KP-ESBL.

3,5

adh3)

w

mESBL
[ AO vsESBL

Fold change (% negative control -

mrkA wzl

Gene target

Figure 4. Effect of Aspergillus oryzae extracellular protein (AOEP) on the gene expression coding for the
fimbriae and capsule of Klebsiella pneumonia extended-spectrum beta-lactamases (KP-ESBL). The expression
of these two genes was measured in response to AOEP: mrkA (type 3 fimbrial shaft) and wzI (surface assembly of
capsule). The expression of the adh3 house-keeping gene was used as an internal control for each sample. The
concentration of AOEP treatment was 150 pg/mL, while the control group was KP-ESBL without AOEP exposure.
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500« 10.000x 5000x 10.000x

Figure 5. Scanning electron microscope (SEM) micrograph image of Klebsiella pneumonia extended-spectrum
beta-lactamases (KP-ESBL) cells exposed to Aspergillus oryzae extracellular protein (AOEP) sub-minimum
inhibitory concentration (MIC, 5000 x magnification left, 10,000 x magnification right). K. pneumoniae biofilms
grew after incubation for 24 hours. AOEP was added with different concentrations: 150 pg/mL (B), 75 pg/mL
(C), 37.5 pyg/mL (D), 18, 75 pg/MI (E) Positive control with the addition of the Kanamycin (F).

AOEP increased survival rates of C. elegans when challenged against KP-ESBL
To observe the effect of AOEP on the infection caused by KP-ESBL, an in vivo study was conducted on C. elegans.

Figure 6 shows the percentage of C. elegans survival after 48 hours of exposure to KP-ESBL. Only about 4% of
C. elegans infected with KP-ESBL survived up to 48 hours, while C. elegans exposed to E. coli OP50 88% survived
until the end of the test. Surprisingly, the C. elegans that were exposed to AOEP and KP-ESBL (18.75, 37.5, 75, and

120,00
100,00
80,00
60,00

40,00

Survival rates (%)

20,00

0,00 —
Control Control 18.75 37.5 75 150
+ -

Concentration (pg/mL)

Figure 6. Survival rates of C. elegans after being inoculated with Klebsiella pneumonia extended-spectrum
beta-lactamases (KP-ESBL) both with and without Aspergillus oryzae extracellular protein (AOEP) by slow
killing assay method. The graph shows the percentage survival rates when the test was carried out without
exposure to AOEP with four different concentrations. KP-ESBL without AOEP was a negative control, while
KP-ESBL with Escherichia coli OP50 (non-pathogenic) was a positive control. Results are expressed as mean + SD.
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Figure 7. Fluorescence micrograph analysis using propidium iodide on C. elegans survival assay (the right
image is colored with PI, the left image is without PI, 100x magnification) after being challenged with
Klebsiella pneumonia extended-spectrum beta-lactamases (KP-ESBL) both with and without Aspergillus oryzae
extracellular protein (AOEP) by slow killing assay method. (A) C. elegans infected with KP-ESBL without AOEP
administration. (B) C. elegans infected with KP-ESBL with AOEP administration. Propidium iodide fluorescence
micrograph of C. elegans (100x magnification). C. elegans infected with KP-ESBL without AOEP died and showed
positive red fluorescence when cultured (increased fluorescence intensity of propidium iodide indicated the death of
the nematode parasiteof C. elegans).

150 pg/mL) had significantly increased survival rates (17 — 68%) compared to the group of C. elegans that were
only infected with KP-ESBL. The highest survival was in the 150 pg/mL group (68.25 4= SD 4.6). the one-way ANOVA
test showed that there was a significant difference between negative control and treated groups (p-value < 0.05).
The linear regression test results showed the R-value was 0.958. The analysis showed that AOEP could reduce the ability
of KP-ESBL to infect C. elegans in a dose-dependent manner. Figure 7A shows the propidium iodide fluorescence
micrograph of C. elegans (10x magnification) and infected with KP-ESBL. The C. elegans showed negative PI
fluorescence when cultured under standard conditions with OP50 as a food source. There was an increase in the
fluorescence intensity of propidium iodide when the C. elegans were infected with KP-ESBL and treated with AOEP
(Figure 7B). The results of the in vivo survival assay showed that AOEP was able to reduce the virulence of KP-, which
could be observed from the increased survival of C. elegans that were infected with KP-ESBL.

AOEP used a competitive antagonistic mechanism by producing QS-like Gram Negative bacteria
molecule to interfere with KP-ESBL virulence

A liquid chromatography-mass spectrometry LC-MS/MS study against AOEP was carried out in order to identify the
A. oryzae molecule that contributes to KP-ESBL virulence and biofilm suppression. The results were displayed as a
chromatogram, which showed the peak height and molecular weight of the sample substance. Figure 8 and Table 3 show
the outcomes of the LC-MS/MS study.

The chromatograms showed a number of substances with various peaks and molecular weights. Six compounds had
prominent and high peaks (Figure 8). Based on the precursor ion (m/z), ion product (m/z), cone voltage, and impact
energy, the six peaks were identified. The six peaks contained substances with properties resembling those of the QS
substance K. pneumoniae. The six substances were NHQ, NQNO, 3-OH-C12-HSL, 3-0x0-C6-HSL, and C10-HSL. The
six compounds were found to match the typical precursor parameters 3-oxo-C6-HSL, 3-OH-C6-HSL, C10-HSL, NHQ,
NQNO, and 3-OH-C12-HSL (see Table 1).

Discussion

The antibacterial ability of antibiofilm derived from natural sources can come from the production of enzymes, the
formation of secondary metabolites or compounds that inhibit QS signals.'® QS inhibition can be mediated by receptor
antagonists or quorum quenching enzymes.'” In this study, we searched for QS inhibitor compounds derived from the
fungus A. oryzae. A. oryzae was harvested at a stationary phase in order to obtain the dominant secondary metabolite.””
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Figure 8.Ion-extracted liquid chromatography-mass spectrometry (LC-MS/MS) chromatogram of a mixture of
standard AHL and AQ molecules showing separation. In order (from top to bottom), 3-oxo-C6-HSL, 3-OH-C6-HSL,
C10-HSL, NHQ, NQNO, 3-OH-C12-HSL.

Table 1. Aspergillus oryzae extracellular protein (AOEP) against cell-free exopolysaccharide (EPS) of Klebsiella
pneumoniae extended-spectrum beta-lactamases (KP-ESBL).

Control (+) Control (-) 18.75 37.5 75 150
%Inhibition* 18.68 0.00 31.00 34.68 37.90 48.67

20.14 0.00 32.50 35.45 39.66 49.42

19.32 0.00 32.29 33.45 42.75 46.15
Average 19.38 0.00 31.93 34.53 40.11 48.08
Standard error 0.74 0.00 0.81 1.01 2.46 1.71

*The inhibitory effect of AOEP on cell-free EPS of KP-ESBL after incubation for 24 hours with different concentrations of AOEP exhibited
inhibitory effect on cell-free EPS of KP-ESBL after incubation for 24 hours. The reduction of cell-free EPS by AOEP at concentrations of 18.75,
37.5,75, and 150 pg/mL was 31.93%, 34.53%, 40.11%, and 48.08%, respectively. The kanamycin was only able to reduce 19.38% of cell-free
EPS, while the negative control of KP-ESBL without AOEP exposure was 0%. The inhibition value of cell-free EPS by AOEP was better than
that by kanamycin (48.08% versus 19.38%).

Table 2. Survival rates of C. elegans after being challenged against Klebsiella pneumoniae extended-spectrum
beta-lactamases (KP-ESBL) with Aspergillus oryzae extracellular protein (AOEP) by slow killing assay method.

Control (+) Control (-) 18.75 37.5 75 150
Survival rate 95 2 31 47 66 83

97 1 28 34 77 79

93 1 38 40 75 80
Average 95.00* 1.33 32.33*% 40.33* 72.67* 80.67*
Standard error 2.00 0.58 5.13 6.51 5.86 2.08

Table shown the percentage survival rates of C elegans infected with KP-ESBL treated with AOEP. KP-ESBL without AOEP served a negative
control, while KP-ESBL with Escherichia coli OP50 (non-pathogenic) was a positive control. Results are expressed as mean =+ SD.

*p <0.001 showed a significant difference in the percentage of survival rates among C. elegans not exposed to AOEP and those exposed to
AOEP 150 pg/mL.

Page 10 of 15



F1000Research 2022, 11:1148 Last updated: 13 NOV 2025

Table 3. QSSM analytes from Aspergillus oryzae secondary metabolites. QSSM: quorum sensing-like molecule.

QSSM analyte Retention Precursor Product Cone Collision
time (min) ion (m/z) ion voltage energy (V)
(m/z)
3-0x0-C6-HSL 3.1 2141 102.1 26 15
3-OH-C6-HSL 3.1 216.1 102.1 26 15
C10-HSL 4.6 256.1 102.1 31 17
NHQ 4.6 272.1 159.1 81 27
NQNO 4.7 288.1 159.1 96 20
3-OH-C12-HSL 4.5 300.1 102.1 35 19

A. oryzae produces secondary metabolites, such as asperfuranon, aspyridone, penicillin, isocoumarin, aspercryptin, and
indole diterpene.”’ However, from the LC-MS/MS analysis, we did not find any secondary metabolites or quorum
quenching enzyme compounds from A. oryzae. This result is different from the LC-MS analysis from extract of A. meleus
that produce AHL acylase, which can inhibit P. aeruginosa biofilms.>” In another study, A. niger produced cellobiose
dehydrogenase which reduced the biofilm of Gram-negative bacteria.”

We discovered three new substances that are similar to the QS molecules of Gram-negative bacteria, which is interesting
because we did not uncover secondary metabolites or quorum quenching enzymes. We propose those molecules, i.e.,
C10-HSL, 3-0x0-C6-HSL, 3-OH-C6-HSL and suggest them as QS molecules because, despite the fact that the three
chemicals resemble the QS molecules found in Gram-negative bacteria, their activity is inversely related. We believe that
A. oryzae’s QS molecules function as a competitive adversary. When it comes to attaching to AHL binding sites in LuxR,
QS molecules compete with native AHL. One of the genes regulated by QS, the biofilm-encoding gene, is downregulated
as a result of QS molecules binding to LuxR. According to this investigation, AOEP significantly reduced the KP-ESBL
bacterial biofilm (74.24%). Aside from preventing the growth of biofilms, AOEP has also been demonstrated to lower
EPS levels. EPS make up arobust biofilm matrix.”*>** The decrease in EPS synthesis was consistent with the structure of
the KP-ESBL biofilm as determined by SEM. In the presence of AOEP, the bacterium cells were unable to aggregate. The
matrix that holds bacteria together was also obviously thinner. Therefore, the absence of QS barriers may be the cause of
the decline in biofilms. QS inhibitors (QSI) function by obstructing the binding sites for autoinducers. It also interferes
with the formation of pili types 1 and 3 and cyclic diguanylate mono phosphate (c-di-GMP).*> As aresult, QSI's inhibition
will cause the expression of pili types 1 and 3 to be suppressed. Our findings are consistent with this notion. After
exposure to AOEP, the expression of the pili type 3 gene (mrkA) was significantly reduced. This suggests that AOEP
include QSI, which lowers mrkA expression. Sadly, there is no research to support our findings.

The expression of the wz/ gene was assessed in order to support the mechanism through which AOEP inhibits KP-ESBL
QS. Because QS controls the formation of capsular polysaccharides (CPS)'**°", inhibiting QS will impair its regulator
role and cause the CPS to continue to be produced.”® The administration of AOEP in this investigation had no effect on the
excretion of CPS by KP-ESBL. Through QS inhibition, it was discovered in this work that AOEP has antibacterial and
antibiofilm activities against KP-ESBL. Because it synergistically reduces the expression of numerous virulence factors
controlled by QS, QS inhibition in KP-ESBL is particularly helpful in the management of pneumonia.'”

We chose C. elegans as a model because it is ideal for assessing QS inhibitors in order to further examine the therapeutic
potency of AOEP on the infection caused by KP-ESBL. AOEP showed antibacterial and anti-QS action against
KP-ESBL in in vitro experiments. The protective effect of AOEP against K. pneumoniae infection on C. elegans lends
weight to these findings. The survival of infected C. elegans was generally increased by AOEP. We verified the anti-QS
activity of AOEP in our investigation. Results from the C. elegans pneumoniae infection model demonstrate how AOEP
can successfully reduce virulence by obstructing KP-QS ESBL's activity in in vitro investigations. It is possible to create
new medicines for infectious diseases using K. pneumoniae QS inhibitors.

Conclusions

This study showed that the extracellular protein of A. oryzae posseses antimicrobial and antibiofilm activity against
KP-ESBL. QSIis an AOEP compound that inhibits QS and degrade biofilms, EPS, and mrkA (type 3 pili). AOEP could
protect C. elegans from KP-ESBL infection. AOEP is a potential source of natural antibiofilm agents against KP-ESBL.
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Figshare: Aspergillus oryzae attenuates quorum sensing -associated virulence factors and biofilm formation in Klebsiella
pneumoniae extended-spectrum beta-lactamases raw data, https://doi.org/10.6084/m9.figshare.20290929.%%

This project contains the following underlying data:
- Biofilm inhibition.xIsx
- c. elegans survival rates.xlsx
- Exopolysaccharide.xlsx
- Minimum Inhibitory concentration.xlsx

- gRT-PCR.xlsx

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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