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ABSTRACT 

This paper establishes necessary and sufficient condition for the boundedness of 

the fractional integral operator     on Morrey spaces over metric measure spaces 

which satisfies the Q-homogeneous and its corollary. 
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1. INTRODUCTION 

We consider to a topological space   (     ), endowed with complete measure   such 

that the space of compactly supported continuous functions is dense in   (   ) and there 

exists a function (metric)       ,   ) satisfying the following conditions. 

1.  (   )    if and only if      

2.  (   )    for all            

3.  (   )   (   ); 

4.  (   )  * (   )   (   )+  

for every        . We have an assumptions that the balls  (   )  *     (   )  

 + are measurable, for        , and    ( (   ))   . For every neighborhood V of 

   , there exists    , such that  (   )   . We also assume that   ( )       * +  
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  and  (    )  (    )   , for all              . The triple (     ) will be 

called metric measure space [7]. 

X is called Q-homogeneous (   ) such that     
     ( )       

  where    and 

   are positive constants [8]. 

Eridani [6,7] proved the boundedness theorem on Lebesgue spaces in    and classic 

Morrey spaces over quasi metric space where  

   ∫
 ( ) 

 . (   (   ))/
     ( )

 

 

with       .  

The result of [7] can be adapted to the operator    with doubling condition. Let      
 , we consider the fractional integral operator    given by 

   ( )  ∫
 ( )

 (   )   
  ( )

 

 

for suitable   on    

The boundedness theorem of Iα on homogeneous classic Morrey spaces can be proved 

using Q-Homogeneous. In this paper, we will prove the generalization of the boundedness 

theorem from [6,7]. 

 

2. PRELIMINARIES 

The following theorem is the inequality for the operator    from   (   ) to   (   ) for the 

case of Euclidean spaces. 

Theorem 2.1 [6] Let (     ) be a space of homogeneous type. Suppose that          

  and      
 

 
. Assume that ν is another measure on X. Then    is bounded from 

  (   ) to   (   ) if and only if  

 ( )      ( )
 ( 

 

 
   )

 

for all balls B in X. 

Eridani and Meshki [7] proved the boundedness results of    

from   (   ) to the classic Morrey spaces     (     ) which is defined as a set 

of functions         
 (   ) such that 

‖      (     )‖      .
 

 ( ) 
∫ | ( )|   ( )
 

/

 

 
  . 

with   is another measure on X, where        and    .  Their theorem can be 

stated as the following theorem. 

Theorem 2.2 [7] Let (     ) be a space of homogeneous type and let            

Suppose that     
 

 
                   

  

 
 

  

 
  Then    is bounded 

from      (     ) to      (     ) if and only if there is a positive constant C such 

that 

 ( )      ( )
 ( 

 

 
   )
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3. MAIN RESULT 

In this section, we formulate the main results of the paper. We begin with the case of β-

homogeneous over metric measure space. 

Theorem 3.1 Let (     ) be a β-homogeneous metric measure space,   be a measure on X, 

              . Then    is bounded from   (   ) to   (   ) if and only if 

there is a constant       such that for every ball B on X, 

 ( )     ( )
 .

 

 
 

 

 
/
 

Proof:(Necessity) If      (   ) then  (   )    and  (   )    thus  (   )  
 (   )   (   )      thus 

 

(  )   
   

 

 (   )   
 

the above inequality implies. 
 ( )

    
 ∫

  ( )

(  )   
 

   ∫
  ( )

 (   )   
 

 

 ∫
  ( )  ( )

 (   )   
 

 

     ( ) 

         ( ) 

‖        ( )‖   ‖      ( )‖   (∫  ( )  ( )
 

)

 

 

   ( )
 

  

(∫|  |   ( )
 

)

 

 

  (∫|    ( )|
 
  ( )

 

)

 

 

  ‖        ( )‖    ( )
 

  

 

Thus 

   ( )
 

    ( )
 

  

    
     ( )       

  thus 

 ( )
 

      

 ( )
 

  ( )
 

      ( )
 

    ( )
 

  

 

 ( )
 

  ( )
 

 
 

 

    

Thus 

 ( )
 

    ( )
 

 
 

 

  

or alternatively 

 ( )     ( )
 .

 

 
 

 

 
/
 

Sufficiency: Let         We define   

 ( )  ∫  ( )  ( )
 (   )  

 

for every   ,   -  Suppose that  ( )   , then       ( )        , for some    .  

Let 

      {   ( )    }                 
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Then (  )    

   
 is non-decreasing sequence,  (  )       ( )             and 

   ∫  ( )  ( )
    (   )     

 

If              then 

 (   )     (   )  ,   -  ⋃ (   

 

    

    -  

if  ( )      then      . Thus 

  ∫  ( )  ( )
 (   )  

   (  )      

for every j, thus 

∫  ( )  ( )
 (   )  

   

from these observations, we have 

∫ (   ( ))
 
  ( )  ∑ ∫ (   ( ))

 
  ( )

    (   )     

 

     (   )  

 

 ∑ ∫ (∫
 ( )  ( )

 (   )   
 (   )     

)

 

  ( )
    (   )     

 

    

 

 ∑ ∫ (∑(
 

    
)

    

   

∫  ( )  ( )

 (   )     

)

 

  ( )
    (   )     

 

    

 

 ( ∑ (
 

    
)

    

    

∫  ( )  ( )

 (   )     

)

 

 ( ) 

Using the fact that 

∫  ( )  ( )  
 (   )     

  (    )         ∫  ( )  ( )
      (   )   

 

then, by using Holder’s inequality, we obtain 

   ( )

(

 ∑ ( ∫ ( ( ))
 
 ( ) 

      (   )   

)

 

  

    

( ∫    ( ) 

      (   )   

)

 

 

 

  
   

)

 

 

 

   ( )

(

 ( ∫ ( ( ))
 
 ( ) 

      (   )   

)

 

 

∑  ( (   ))
  

 

  

 

    

 

  
   

)

 

 

 

   ( ) 
 .  

 

 
/

(

 ( ∫ ( ( ))
 
 ( ) 

      (   )   

)

 

 

)

 

 

 



Hairur Rahman, M. Imam Utoyo and Eridani 

http://www.iaeme.com/IJCIET/index.asp 2313 editor@iaeme.com 

   ( )
 .

 

 
 

 

 
/
 
 .  

 

 
/

(

 ( ∫ ( ( ))
 
 ( ) 

      (   )   

)

 

 

)

 

 

 

 

  

(

 ( ∫ ( ( ))
 
 ( ) 

      (   )   

)

 

 

)

 

 

 

 

Thus 

‖       ( )‖   ‖     ( )‖ 

Next, using the modified condition for measure  , we obtain the following result. 

Theorem 3.2 Let (     ) be a Q-homogeneous metric measure space,   be a measure on X,     

               
 

   . Then    is bounded from   (   ) to   (   ) if and only 

if there is a constant       such that for every ball B on X, 

 ( )      
(    

 

  )    

with    
  

   
. 

 

Proof. (Necessity) Suppose that    is bounded from    (   ) to   (   ) thus 

 

‖       (   )‖   ‖     (   )‖ 

Hence, 

(∫|   |
   

 

)

 
 ⁄

  (∫| ( )|   
 

)

 
 ⁄

 

     where          then 

(∫|    |
 
  

 

)

 
 ⁄

  (∫|  |
 
  

 

)

 
 ⁄

 

 

(∫ (∫
  

 (   )   
  ( )

 

)

 

  
 

)

 
 ⁄

   ( )
 

 ⁄  

 

     ( ) ( )
 

 ⁄    ( )
 

 ⁄  

 ( )
 

 ⁄    ( )
 

 
  

     

Because    
  

   
  and     

     ( )       
  then 

 ( )
 

 ⁄    
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 ( )    
 (    

 

  ) 

Sufficiency. Let      . For x,    , next we consider the notation 

  ( )  {   (   )  
 (   )

   
}   

  ( )  {  
 (   )

   
  (   )      (   )}   

  ( )  *   (   )     (   )+  

Thus  

∫(   ( ))
 

  ( )

  ∫ (∫ | ( )| (   )     ( )
  ( )

)

 

  ( )
 

  ∫ (∫ | ( )| (   )     ( )
  ( )

)

 

  ( )
 

  ∫ (∫ | ( )| (   )     ( )
  ( )

)

 

  ( )  
 

         

If y     ( ), then δ(a, x) < 2     (   ). Thus obviously 

   ∫ (∫ | ( )| (   )     ( )
  ( )

)

 

  ( )
 (   )  

 

  ∫ (∫ | ( )| (   )     ( )
 (   )  (   )

)

 

  ( )
 

 

  ∫  (   ) (   ) (∫ | ( )|  ( )
 (   )  (   )

)

 

  ( )
 

 

Thus we have 

∫  (   ) (   )  ( )
 (   )  

 ∑∫ . (   ) (   )  ( )/
 (       )  (    )

 

   

 

  ∑(   ) (   ) ( )     (   ) ( )

 

   

 

which implies 

∫  (    )  ( )
 (   )  

   ( ) 
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Thus 

   
       (∫  (   ) (   )  ( )

 (   )  

)

 

 

(∫  (    )  ( )
 (   )  

)

 

  

 

 .   (   ) ( )/

 

 
  ( )

 

   

   (   )  
(    

 

  
) 

 

  
 .

   

 
/
     

Now, using theorem C in [9], we have 

    (∫| ( )|   ( )
 

)

   

  ‖ ‖  (   )
 

 

Next, we observe that if  (   )      (   ), then  (   )     (   )     (   )  
 (   )      (   )  Thus  (   )      (   )  Implies, using the condition       ( )  

  
(    

 

  )    then 

    ∫ (∫
| ( )|

 (   )   
  ( )

 (   )  (   )

)

 

 (   )

  ( ) 

  ∫ (∑∫
| ( )|

 (   )   
 .       (   )/  .     (   )/

 

   

  ( ))

 

 (   )

  ( ) 

  ∫

[
 
 
 

∑(∫ | ( )| 

 .       (   )/

  ( ))

 

  

    (   )

 (∫  (   )(   )  
  ( )

 .       (   )/  .     (   )/

)

 

  

]
 
 
 
 

  ( ) 

  ‖ ‖  (   )
 ∫ (∑.   (   )/

   

(  .       (   )/)

 

  

 

   

)

 

 (   )

  ( ) 

  ‖ ‖  (   )
 ∫ (∑.   (   )/

   

 
 

  

 

   

)

 

 (   )

  ( ) 

  ‖ ‖  (   )
  (   )  

  

   ( ) 

  ‖ ‖  (   )
 

 



The Fractional Integral Operators on Morrey Spaces Over Q-Homogeneous Metric Measure Space 

http://www.iaeme.com/IJCIET/index.asp 2316 editor@iaeme.com 

Hence, we conclude that 

    ‖ ‖  (   )
 

 

To estimate   , we consider two cases. First assumption is that    
 

  
. The hypothesis 

on the theorem     which implies       
 

  
. Given    

  

 (     )  
  then     . 

First assumption     and suppose that 

   *      (   )      +  

   {  
    

  
  (   )    

   }  

Assume that  
  

 
, using Holder’s inequality, we obtain 

   ∫ (∫ | ( )|
  ( )

 (   )     ( ))
 

 

  ( ) 

  ∑∫ (∫ | ( )| (   )   

  ( )

  ( ))
  

 

   

  ( ) 

 ∑

(

 
 
∫ (∫ | ( )| (   )   

  ( )

  ( ))
  

  

  ( )

)

 
 

 

  

   

 (∫  
  

      ( 
  

))

    

  

 

  ∑ ( )
    

  

   

(∫ (  .| | 
  

/)
  

  ( )
 

)

 

  

 

  ∑ ( )
    

  

   

(∫ | ( )| 

  

  ( ))

 

 

 

Where  

    

  
   

 

  
 

   
 ( (   )      )

  
 

   
 (      )
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  (∫ | ( )| 

  

  ( ))

 

 

 

  ‖ ‖  (   )
 

 

if     , thus, we have 

   ∫ (∫ | ( )|
  ( )

 (   )     ( ))
 

 

  ( ) 

  ∑∫ (∫ | ( )| (   )   

  ( )

  ( ))
  

  

   

  ( ) 

  ∑(∫ (  .| | 
  

/)   ( )
 

)

  

   

 

  ∑(∫ | ( )| 

  

  ( ))

 

 

   

 

  (∫ | ( )| 

  

  ( ))

  

 

 

  ‖ ‖  (   )
 

 

If     
 

  
 , using Holder's inequality, we obtain 

   ∫ (∫ ( ( ))
 
  ( )

  ( )

)

 

 

(∫  (   )(   )  
  ( )

  ( )

)
 

 

  

  ( ) 

thus we have 

∫  (   )(   )  
  ( )

  ( )

 ∫  ( (   (   ))  { | (   )   
 

(   )  })
 

 

   

 ∫  ( (   (   ))  { | (   )   
 

(   )  })
 (   )(   )  

 

  

 ∫  ( (   (   ))  { | (   )   
 

(   )  })
 

 (   )(   )  
   

   (   )  (   )  
 ∫  

 

(   )  

 

 (   )(   )  
     (   )  (   )  
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where the positive constant   is independent of   and  . Hence, using Holder's inequality, 

we obtain 

   ∫ (∫  (   )(   )  

  ( )

  ( ))

 

  

(∫ | ( )| 

  ( )

  ( ))
 

 

 

  ( ) 

 ∑∫  (   )
  (   )  (

 

  
)

  

(∫ | ( )| 

  ( )

  ( ))

 

 

   

  ( ) 

   
 ((    

 

  
)  

  

   (   ) )
(∫ | ( )| 

  

  ( ))

 

 

  (∫| ( )| 

 

  ( ))

 

 

 

  ‖ ‖  (   )
 

 

The proof is complete. 

The similar results concerning the boundedness properties of the fractional integral 

operator    on the classic Morrey spaces using Q-homogeneous metric measure space is 

obtained by the following theorem. 

Theorem 3.3 Let (     ) be a Q -homogeneous metric measure space,   be a measure on X, 

               
 

        
  

 
   and 

   

  
 

  

 
 . Then    is bounded from 

 
  

   
  (   ) to  

  
  
 (   ) if and only if there is a constant       such that for every ball B 

on X, 

 ( )      
(    

 

  )    

with    
  

   
. 

Proof: (Necessity) Suppose that   is bounded from  
  

   
 (   ) to      (   ) which implies 

that 

‖     
    (   )‖   ‖   

  
   
 (   )‖ 

Thus 

(
 

 ( )  
∫|   |

 
 

 

  ( ))

 

 

  (
 

 ( )
   
 

∫| ( )| 
 

 

  ( ))

 

 

 

     where     and     then 
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(
 

 ( )  
∫|    ( ) |

 
 

 

  ( ))

 

 

  (
 

 ( )
   
 

∫|  ( ) |
 

 

 

  ( ))

 

 

 

(
 

 ( )  
∫ (∫

  

 (   )   
  ( )

 

 

)

  

 

  ( ))

 

 

   ( )
    
   ( )

 

  

 ( )
   
       ( ) ( )

 

    ( )
    
   ( )

 

  

Because    
 

   
 
   

  
 

  

 
 and    

   ( )     
  then 

 ( )
 

    ( )
 

       

 ( )
 

    
 

 

       

 ( )    
(    

 

  )  

Sufficiency. Given arbitrary ball   on  . Suppose that    (   ) and  ̃  (    )  and 

   
  

   
 ( ). we write 

           ̃
    ̃  

‖    
 ( )‖  (∫| ( )| 

 

  ( ))

 

 

 

  ( )
   
  (

 

 ( )
   
 

∫| ( )| 
 

 

  )

 

 

 

  ( )
   
  ‖   

  
   
 (   )‖ 

if      (   ), and using Theorem 3.2, it is obvious that 

(
 

 ( )  
∫|    |

 
 

 

  ( ))

 

 

  ( )
 

  
 (∫ |    |

 
 

 

  ( ))

 

 

 

  ( )
 

  
 ‖      

 ( )‖ 

   ( )
 

  
 ‖    

 ( )‖ 
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   ( )
 

  
   ( )

 
   
  ‖   

  
   
 (   )‖ 

  ‖   
  

   
 (   )‖ 

further we will prove, 

|    ( )|  |∫
 ( )

 (   )   
 (   )  

  ( )| 

 ∫
| ( )|

 (   )   
 (   )  

  ( ) 

 ∑∫
| ( )|

 (   )   
     (   )      

  ( )

 

   

 

 ∑(
 

   
)
   

∫ | ( )|
 (   )      

  ( )

 

   

 

  ∑(∫ | ( )| 

 (   )      

  ( ))

 

  

   

(∫   

 (   )      

  ( ))

 

 

 

      
 

   ( )
   
  ‖   

  
   
  (   )‖∑ ( (       ))

 

 
 

(   )   

 

   

 

  ( )
   
       

 

  ‖   
  

   
  (   )‖ 

Then  

(
 

 ( )  
∫|    ( )|

   ( )
 

)

 

 

   ( )
 

  ( )
   
  ( )

   
       

 

  ‖   
  

   
  (   )‖ 

  ‖   
  

   
  (   )‖ 

The proof is complete. 

The condition 
   

  
 

  

 
 is interchangeable to the condition  ( )      

 (    
 

  ) Yet, the 

following theorem is hold obviously. 
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Theorem 3.4 Let (     ) be a Q -homogeneous metric measure space,   be a measure on X,     

               
 

        
  

 
   and  ( )      

(    
 

  )   with    
  

   
 . 

Then    is bounded from  
  

   
  (   ) to  

  
  
 (   ) if and only if there is a constant       

such that for every ball B on X, 

   

  
 

  

 
 

When Q = β, the previous theorem implies the following corollary. 

Corollary 3.5 Let (     ) be a β-homogeneous metric measure space,   be a measure on X,  

        
  

 
          

 

 
 , and  

  

 
 

  

 
  . Then    is bounded from  

  
  
 (   ) to 

 
  

  
 (   ) if and only if there is a constant       such that for every ball B on X, 

 ( )      ( )
 .

 

 
 

 

 
/
 

Corollary 3.6 Let (     ) be a β-homogeneous metric measure space,   be a measure on X,  

        
  

 
          

 

 
 , and  ( )     ( )

 .
 

 
 

 

 
/
. Then    is bounded from 

 
  

  
 (   ) to  

  
  
 (   ) if and only if there is a constant       such that for every ball B 

on X, 

 
  

 
 

  

 
 

4. CONCLUSIONS 

Through our work we have been able to extend the known results for the classical fractional 

integral operator    to the boundedness of with measure µ and ν on Morrey spaces over Q-

homogeneous metric measure space. Our results not only cover the known results for   , but 

also enrich the class of funtions of α,    and    for which the operator    is bounded from the 

classical Morrey space  
  

   
 ( )  to       ( ), on Q-homogeneous and the corollary    is 

bounded from the classical Morrey space      ( ) to      ( ), on β-homogeneous. 
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