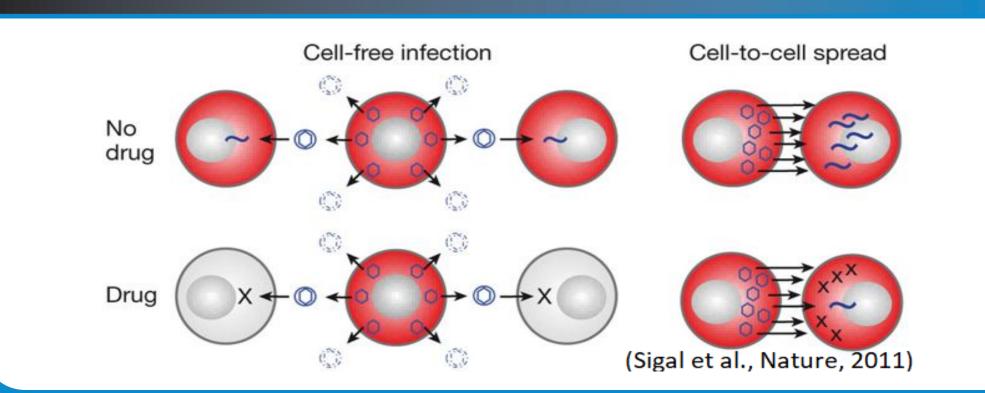
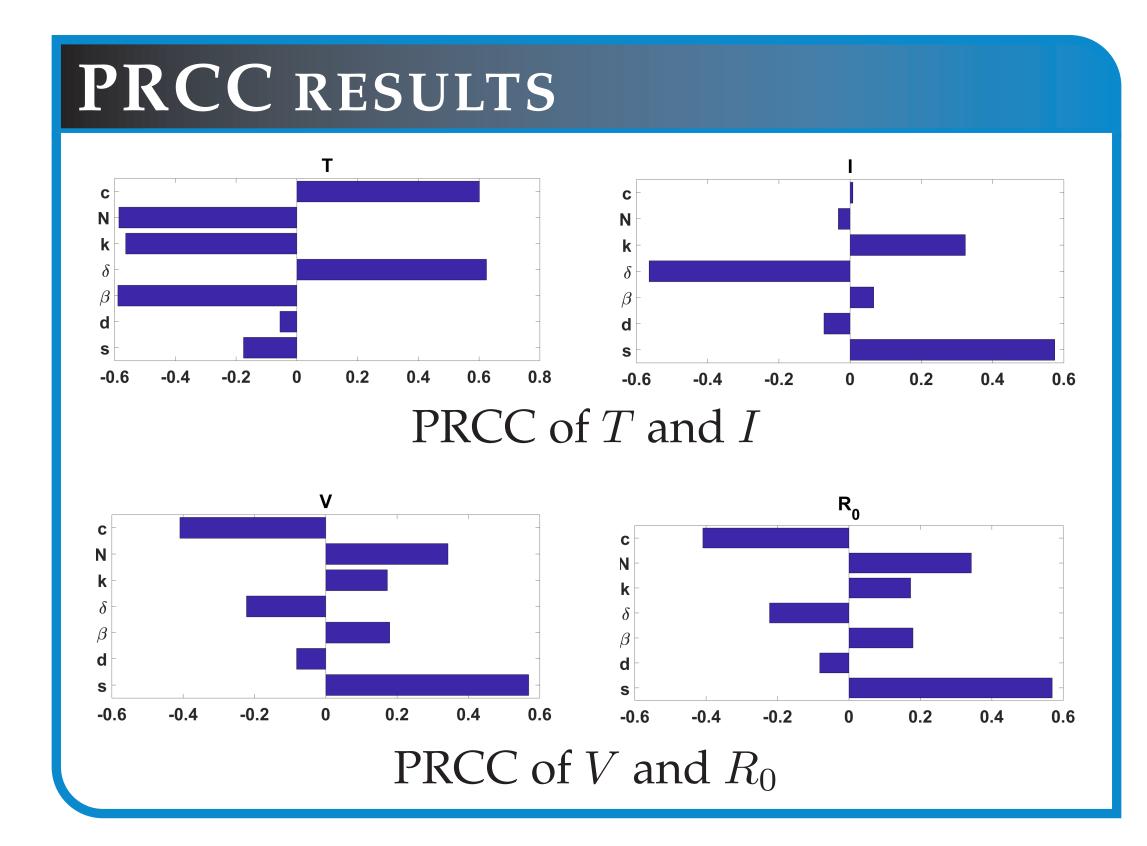


HIV WITHIN-HOST DYNAMICS INCORPORATING CELL TO CELL VIRUS TRANSMISSION

International Centre for Theoretical Physics Society for Mathematical Biology

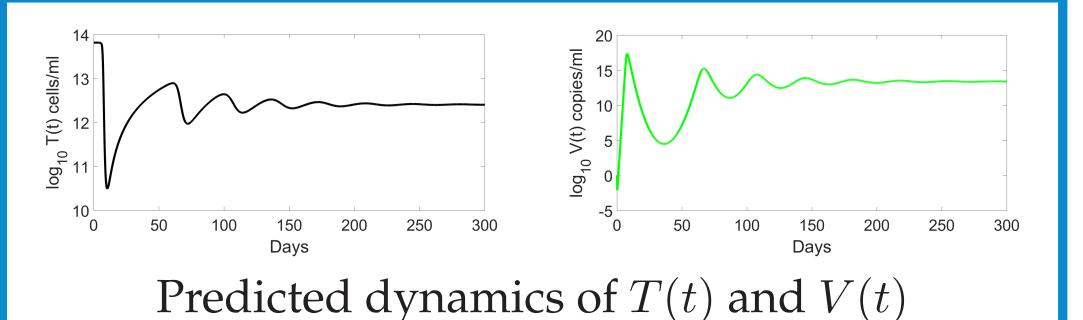

 $Heni\ Widayani^1$, $Ghaus\ Ur\ Rahman^2$, $Kabita\ Luitel^3$, $Gauri\ Bhuju^4$, $Bindra.D.Shakya^3$ Supervisor: Prof. Libin Rong⁵

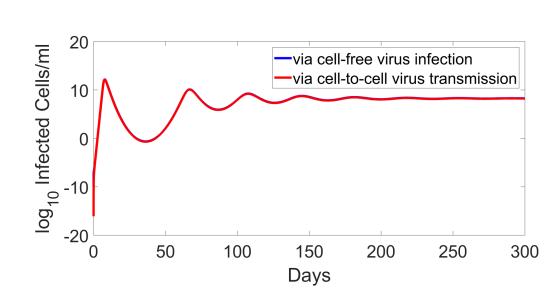

¹UIN Maulana Malik Ibrahim (Indonesia), ²University of Swat (Pakistan), ³Tribhuvan University (Nepal), ⁴Kathmandu University, (Nepal), ⁵University of Florida (USA).

ABSTRACT

HIV can be directly transmitted from infected cells to healthy cells. In this project, a new HIV model is developed by including both cellto-cell transmission and cell-free virus infection. Basic reproductive number R_0 is obtained and shown to be a critical threshold parameter. Two steady states of the model are obtained and the corresponding characteristic equations are analyzed. It is shown that the infection-free steady state is locally asymptotically stable when R_0 lies below unity while the infected steady state is locally asymptotically stable when R_0 exceeds unity. Sensitivity and uncertainty analysis was performed to evaluate which parameter(s) the model prediction and R_0 are most sensitive to. During cell-to-cell transmission, multiple virions can be transmitted simultanenously, which makes the therapy difficult to inhibit all the transmission. An extended model including different numbers of virions transmitted during cell-to-cell transmission has been proposed and will be further analyzed to study the HIV dynamics under therapy.

CELL-TO-CELL TRANSMISSION

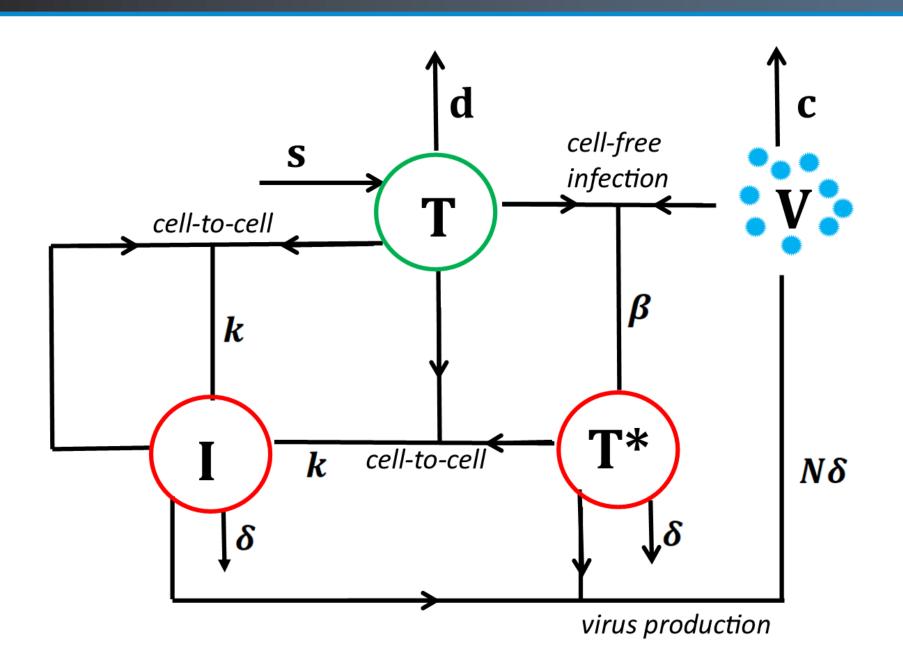




VARIABLE & PARAMETER

Par.	Description	Value
T(t)	$CD4^+$ uninfected cells	cells
$T^*(t)$	$CD4^+$ infected cells	cells
	via cell-free infection	
I(t)	$CD4^+$ infected cells	cells
` '	via cell-to-cell	
V(t)	Population of virus	virus
S	Generation rate of	$10^4 \frac{1}{mL.day}$
	uninfected cells	\mathcal{J}
d	Death rate of	0.01 per day
	uninfected cells	
β	Infection rate of cells	$2.4 \times 10^{-8} \frac{mL}{day}$
	by cell-free virus	
k	Rate of cell-to-cell	$2\times 10^{-6} \frac{mL}{day}$
	viral transmission	aag
δ	Death rate of	1 per day
	infected cells	_
N	Viral burst size	$2 \times 10^3 \frac{virus}{cell}$
С	Viral clearance rate	$2 \times 10^3 \frac{virus}{cell}$ 23 per day

SIMULATION OF DYNAMICS



Predicted dynamics of $T^*(t)$ and I(t)

CONCLUSION

We developed and analyzed a new HIV infection model that includes both cell-free virus infection and cell-to-cell transmission. The basic reproductive ratio is obtained and shown to govern the dynamics of the model. The extended model that includes different numbers of virions transmitted during cell-to-cell transmission may explain HIV persistence during suppressive therapy.

VIRAL DYNAMIC MODEL

 R_0 is the number of new virions that can be pro- System (1) has two equilibria duced by one virion put in a wholly susceptible $CD4^+$ T cell population.

By the Next Generation Matrix (NGM) method, we get

$$R_0 = \rho(\mathbf{NGM}) = \frac{\beta \, sN}{cd} + \frac{ks}{d\delta}$$

Proposition 0.1. E_0 is locally asymptotically stable when $R_0 < 1$.

Proposed Model:

$$\dot{T} = s - dT - \beta TV - kT(T^* + I)$$

$$\dot{T}^* = \beta TV - \delta T^*$$

$$\dot{I} = kT(T^* + I) - \delta I$$

$$\dot{V} = N\delta (I + T^*) - cV$$
(1)

with non-negative initial condition

$$T(0) = T_0, T^*(0) = T_0^*, I(0) = I_0, V(0) = V_0$$

- Infection free equilibrium $E_0 = (T_0 = \frac{s}{d}, T_0^* = 0, I_0 = 0, V_0 = 0)$
- Infected equilibrium, $E_1 = (T_1, T_1^*, I_1, V_1)$ where

$$T_1 = \frac{\delta c}{N\beta \delta + ck} ; T_1^* = \frac{(R_0 - 1)cd\delta N\beta}{(N\beta \delta + ck)^2};$$

$$I_1 = \frac{c^2 k d(R_0 - 1)}{(N\beta \delta + ck)^2} ; V_1 = \frac{(R_0 - 1)d\delta N}{N\beta \delta + ck}$$

Proposition 0.2. E_1 exists and is locally asymptotically stable when $R_0 > 1$.

AN EXTENDED MODEL UNDER THERAPHY

$$\dot{T} = s - dT - (1 - \varepsilon)\beta TV - \sum_{i=1}^{n} (1 - \varepsilon_i) f_i k T (T^* + \sum_{i=1}^{n} I_i)$$

$$\dot{T}^* = (1 - \varepsilon)\beta TV - \delta T^*$$

$$\dot{I}_i = (1 - \varepsilon_i) f_i k T (T^* + \sum_{i=1}^{n} I_i) - \delta_i I_i, \quad i = 1, ...n$$

$$\dot{V} = N \left(\delta T^* + \sum_{i=1}^{n} \delta_i I_i \right) - cV$$

- I_i is the concentration of infected cells via cell-to-cell transmission in which i virions are transmitted
- ε is the drug efficacy blocking cell-free virus infection; ε_i is the drug efficacy blocking cell-to-cell transmission that leads to I_i
- $\varepsilon_1 > \varepsilon_2 > ... > \varepsilon_n$ (the more virions transmitted, the less effective therapy)
- $\bullet \quad \sum_{i=1}^{n} f_i = 1$

The basic reproduction ratio for extended model under treatment is

$$R_0 = \frac{1}{2} T_0 \left(\frac{N\beta(1-\varepsilon)}{c} + k \sum_{i=1}^n \frac{(1-\varepsilon_i)f_i}{\delta_i} + \sqrt{\left(\frac{N\beta(1-\varepsilon)}{c} - k \sum_{i=1}^n \frac{(1-\varepsilon_i)f_i}{\delta_i} \right)^2 + \frac{4N(1-\varepsilon)\beta k}{c\delta} \sum_{i=1}^n (1-\varepsilon_i)f_i} \right)$$

REFERENCES

Wang & Rong (2019). HIV low viral load persistence under treatment: Insights from a model of cell-tocell viral transmission Applied Mathematical Modelling, 94:44-51, 2019.

ACKNOWLEDGEMENT

The research was a part of CIMPA Summer School in Mathematical Biology in Kathmandu, Nepal (June 17 until 25, 2019). We acknowledge support from CIMPA, ICTP, and SMB.