

ALCHEMY Jurnal Penelitian Kimia

Laman resmi: https://jurnal.uns.ac.id/alchemy

Pengaruh Penggantian Kation-*A*/Sr oleh Ba pada Morfologi Partikel Ba_xSr_(1-x)TiO₃ (x = 0; 0,2; 0,4; 0,6; 0,8) Hasil Sintesis dengan Metode Lelehan Garam

Hasal Maulidianingtiyas, Aldi Dwi Prasetiyo, Fikri Haikal, Indra Nur Cahyo, Vina Nurul Istighfarini, Anton Prasetyo*

Program Studi Kimia, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jalan Gajayana 50 Malang, Indonesia, 65144.

*Corresponding author: anton@kim.uin-malang.ac.id

DOI: 10.20961/alchemy.17.2.48554.211-218

Received 15 February 2021, Accepted 16 April 2021, Published 09 September 2021

Kata kunci: kation Ba; metode lelehan garam; <i>nearly cubic</i> <i>particle</i> ; partikel polihedra; SrTiO ₃ .	ABSTRAK. SrTiO ₃ adalah material berstruktur perovskit yang dilaporkan berpotensi sebagai material fotokatalis. Penggantian pada sebagian kation- <i>A</i> material fotokatalis berstruktur perovskit dilaporkan dapat menurunkan energi celah pitanya, akan tetapi unsur pengganti juga dilaporkan mempengaruhi morfologi partikel yang terbentuk. Dalam penelitian ini, dikaji pengaruh penggantian kation- <i>A</i> pada SrTiO ₃ (Ba _x Sr _(1-x) TiO ₃ ($x = 0; 0, 2; 0, 4; 0, 6; 0, 8$)) terhadap morfologi partikelnya. Senyawa uji disintesis dengan metode lelehan garam dan dalam penelitian ini menggunakan garam NaCl. Difraktogram sampel menunjukkan bahwa senyawa uji berhasil disintesis kecuali pada $x = 0, 8$ masih ditemukan senyawa pengotor yang berupa TiO ₂ dan BaCO ₃ . Gambar SEM menunjukkan bahwa keberadaan kation Ba mengubah morfologi partikel dari <i>nearly cubic</i> menjadi bentuk polihedra dan menyebabkan ukuran partikel menjadi lebih besar.
Keywords: Ba cation; molten salt synthesis; nearly cubic particle; polyhedral particle; SrTiO ₃	ABSTRACT. The Effect of Cation- <i>A</i> /Sr Replacement by Ba on Particle Morphology of Ba _x Sr _(1-x) TiO ₃ (x = 0; 0.2; 0.4; 0.6; 0.8) Synthesized by Molten Salt Method. SrTiO ₃ is a perovskite structure material that is reported as a potential photocatalyst material. Replacement of a part of the <i>A</i> -cation on a perovskite structure was reported can reduce its bandgap energy. However, the replacement element was also reported to affect the particle morphology. In this study, the effect of <i>A</i> -cation replacement on SrTiO ₃ (x = 0, 0.2, 0.4, 0.6, 0.8) to its particle morphology was studied. The sample of Ba _x Sr _(1-x) TiO ₃ (<i>x</i> = 0, 0.2, 0.4, 0.6) were synthesized by molten salt synthesized but at <i>x</i> = 0.8 still found impurities TiO ₂ and BaCO ₃ . SEM images showed that Ba-cation presence changes the particle morphology from nearly cubic to polyhedral shape and the particle size also becomes larger.

PENDAHULUAN

SrTiO₃ adalah material semikonduktor berstruktur perovskit yang berpeluang digunakan pada teknologi fotokatalis dan mempunyai energi celah pita sebesar 3,2 eV (Puangpetch *et al.*, 2009). Dengan energi celah pita sebesar itu maka material fotokatalis SrTiO₃ mempunyai fungsi kerja yang setara dengan panjang gelombang ultraviolet. Hal ini tentunya menjadi kurang ekonomis jika menggunakan sumber foton dari matahari. Peneliti terdahulu telah melaporkan bahwa teknik pendadahan atau penggantian sebagian pada kation-*A* dan -*B* di struktur senyawa perovskit (*ABO*₃) dapat menurunkan energi celah pita (Wang *et al.*, 2015). Teknik ini telah dipakai oleh banyak pihak untuk menurunkan energi celah pita dari SrTiO₃ seperti *doping* dengan Cr, Ni, Cu, Rh, Mn dan Al (Patial *et al.*, 2020). Jenis kation-*A* pada material berstruktur perovskit juga dilaporkan berpengaruh pada energi celah pitanya. Ukuran kation-*A* yang lebih besar maka energi celah pitanya menjadi semakin kecil (Hur *et al.*, 2006). Oleh karenanya penggantian sebagian kation Sr (yang menempati *site* kation-*A*) dengan kation yang berukuran lebih besar dapat diharapkan menurunkan energi celah pitanya.

Morfologi partikel fotokatalis dilaporkan berpengaruh pada aktivitas fotokatalitiknya sehingga kontrol morfologi partikel fotokatalis menjadi penting sebagai usaha untuk meningkatkan aktivitas fotokatalis. Reaksi fotokatalitik merupakan proses yang bekerja pada permukaan material, sehingga efisiensi fotokatalitik berkaitan erat dengan morfologi dan struktur mikro material fotokatalis (Dong *et al.*, 2017). Beberapa morfologi partikel SrTiO₃ yang pernah dilaporkan adalah bentuk tidak beraturan, dan kubus (Gao *et al.*, 2018; Li *et al.*, 2010). Partikel dengan bentuk kubus dilaporkan mempunyai aktivitas fotokatalitik yang lebih baik. Hal ini disebabkan laju rekombinasi *electron-hole* yang lebih rendah (Kato *et al.*, 2013; Yamakata *et al.*, 2015).

Keberadaan dopan pada material berstruktur perovskit dilaporkan mempengaruhi morfologi partikel (Wu *et al.*, 2018). Hal ini disebabkan karena dopan akan menyebabkan distorsi pada struktur lokal perovskit yang akan mempengaruhi pertumbuhan kristal (Kudo *et al.*, 2007). Abdi *et al.* (2020) melaporkan bahwa SrTiO₃ *doping* La-Fe mengalami penurunan ukuran partikel dan menjadi lebih homogen yang disebabkan karena keberadaan defek kristal yang menghambat pertumbuhan kristalnya. Laporan yang berbeda disampaikan oleh Tonda *et al.* (2014) yang mendoping SrTiO₃ dengan Cr-La yang menyatakan bahwa sampel SrTiO₃ yang diperoleh adalah nanokubus dan keberadaan dari unsur doping tidak mempengaruhi morfologi partikelnya. Hal ini menunjukkan bahwa peran doping tidak sama dalam tahap pertumbuhan kristal suatu senyawa.

Penggantian kation-A pada SrTiO₃ dengan unsur yang berukuran lebih besar daripada Sr telah dilaporkan oleh Hussain *et al.* (2020) yang mengganti Sr dengan logam Ba ($Ba_xSr_{(1-x)}TiO_3$ (x = 0; 0,05; 0,10 dan 0,15)) dengan metode sol-gel. Dalam hal ini Sr (jari-jari ionik 1,18 Å (Jiang et al., 2020)) digantikan oleh logam dengan ukuran yang lebih besar (jari-jari ionik Ba adalah 1,61 Å (Jesudos et al., 2016)). Penggantian kation-A/Sr oleh logam Ba dilaporkan menyebabkan penurunan energi celah pitanya. Hasil analisis morfologi dengan atomic force microscopy (AFM) diperoleh hasil bahwa morfologi partikel SrTiO₃ doping Ba tidak beraturan dan dengan meningkatnya konsentrasi doping Ba maka meningkatkan ukuran dan kekasaran permukaan partikelnya (Hussain et al., 2020). Hal ini menunjukkan bahwa kation Ba mempengaruhi pertumbuhan kristal SrTiO₃ Akan tetapi hasil analisis AFM masih belum memberikan informasi yang detail terkait perubahan morfologi dari partikel SrTiO3 karena doping Ba. Hal ini dikarenakan fungsi utama dari AFM adalah karakterisasi topologi partikel. Khare dan Chauhan (2015) juga melaporkan bahwa keberadaan logam Ba dapat meningkatkan ukuran partikel dari SrTiO3, akan tetapi gambar yang diperoleh dari karakterisasi dengan menggunakan scanning electron microscopy (SEM) masih belum jelas menggambarkan morfologi partikelnya. Wu *et al.* (2016) juga melaporkan pengaruh dopan Barium pada senyawa $SrTiO_3$ (Ba₂Sr_(1-x)TiO₃ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 dan 1)) yang disintesis dengan pencampuran sederhana prekusor BaCl₂·2H₂O, SrCl₂·6H₂O dan Titanium Isopropoksi dalam larutan air/etanol selama 6 jam dan dilaporkan bahwa keberadaan doping Ba mengubah morfologi partikel dari kubus menjadi sphere. Kenaikan konsentrasi dopan Ba juga dilaporkan menyebabkan penurunan ukuran partikelnya.

Metode lelehan garam (MSS) adalah salah satu metode sederhana yang dilaporkan dapat menghasilkan morfologi partikel yang khas, sehingga MSS memberikan peluang untuk meningkatkan aktivitas fotokatalitik suatu material dengan kemampuan kontrol morfologinya (Yan *et al.*, 2019). Pertumbuhan partikel dalam metode ini dipengaruhi beberapa hal diantaranya: suhu, jenis lelehan garam, waktu reaksi, dan jenis prekursor (Januari *et al.*, 2020; Kimura, 2011; Xue *et al.*, 2018). Berdasarkan uraian di atas, maka dalam penelitian ini mengkaji pengaruh penggantian kation-*A*/Sr oleh Ba pada morfologi partikel SrTiO₃ (Ba_xSr_(1-x)TiO₃ (x = 0; 0,2; 0,4; 0,6; 0,8)) yang disintesis dengan metode lelehan garam.

METODE PENELITIAN

Prekursor yang digunakan adalah BaCO₃ (Merck), TiO₂ (Sigma-Aldrich), dan SrTiO₃ (Sigma-Aldrich). Bahan lain yang digunakan adalah NaCl (Merck), aseton *p.a* (Merck), AgNO₃ (Merck) dan aquades. Massa target produk Ba_xSr_(1-x)TiO₃ dengan x = 0; 0,2; 0,4; 0,6; dan 0,8 adalah 2,5 gram. Metode sintesis yang digunakan dalam penelitian ini adalah MSS dengan menggunakan lelehan garam NaCl dan rasio mol produk dan garam NaCl yang digunakan adalah 1:7. Kebutuhan prekursor dan garam didasarkan pada perhitungan stoikometrinya. Seluruh prekursor digerus selama satu jam dan ditambahkan aseton untuk membantu penghomogenan dan kemudian dikalsinasi selama 6 jam pada suhu 700 °C. Sampel dikeluarkan dari tanur, kemudian digerus kembali dan ditambahkan garam NaCl (Merck) dan selanjutnya dikalsinasi selama 8 jam pada suhu 900 °C. Untuk menghilangkan garam maka sampel dicuci dengan aquades hangat dan untuk memastikan sampel bebas dari garam maka filtrat hasil pencucian diuji dengan AgNO₃.

Identifikasi fasa senyawa produk dilakukan dengan menggunakan teknik difraksi sinar-X (XRD) dengan instrumen tipe Panalytical Xpert-pro *diffractometer*. *Refinement* difraktogram dianalisis dengan metode Le Bail dengan menggunakan piranti lunak Rietica untuk menentukan data kristalografinya. Pengukuran XRD dilakukan pada rentang $2\theta = 20^{\circ} - 80^{\circ}$. Morfologi dan ukuran partikel diidentifikasi dengan instrumen SEM dengan spesifikasi JEOL JSM 6510 LA dan selanjutnya dilakukan analisis dengan menggunakan perangkat lunak Image-J untuk menghitung luas area partikel. Perhitungan luas area dilakukan pada 10 partikel terpilih yang mempunyai bentuk utuh (tidak terhalang partikel lain) dan dengan batas pengukuran adalah keliling luar dari partikel.

HASIL DAN PEMBAHASAN

Difraktogram produk SrTiO₃ ditampilkan pada Gambar 1, dan dicocokkan dengan difraktogram standar SrTiO₃ pada *joint committee on powder diffraction standards* (JCPDS) No. 89-4934. Difraktogram sampel SrTiO₃ menunjukkan puncak difraksi yang identik dengan SrTiO₃ (2θ (°): 32,19; 39,75; 46,29; 57,57; 67,620), hal ini menunjukkan bahwa produk SrTiO₃ sudah berhasil disintesis. Puncak difraksi tambahan tidak ditemukan yang mengindikasikan tidak adanya senyawa pengotor. Puncak difraksi yang tajam menunjukkan bahwa sampel yang diperoleh mempunyai kristalinitas yang tinggi.

Gambar 1. Difraktogram SrTiO3.

Difraktogram senyawa $Ba_xSr_{(1-x)}TiO_3$ (x = 0,2; 0,4; 0,6; dan 0,8) ditampilkan pada Gambar 2. Difraktogram yang diperoleh kemudian dibandingkan dengan difraktogram standar $Ba_{0,5}Sr_{0,5}TiO_3$ pada JCPDS No. 39-1395. Diperoleh hasil bahwa pada difraktogram $Ba_xSr_{(1-x)}TiO_3$ (x = 0,2; 0,4; 0,6) mempunyai kesesuaian dengan difraktogram standar yang ditunjukkan dengan keberadaan puncak difraksi khas pada 2 θ (°): 22,48; 32,06; 39,52; 45,93; 51,75; 57,08; 67,01; dan 71,73. Pada difraktogram $Ba_xSr_{(1-x)}TiO_3$ (x = 0,8) ditemukan puncak difraksi tambahan yang mengindikasikan adanya senyawa pengotor. Hasil identifikasi menunjukkan bahwa senyawa pengotor adalah TiO₂ (2θ (°): 37,75), dan BaCO₃ (2θ (°): 43,92). Senyawa pengotor identik dengan prekursor, hal ini menunjukkan bahwa reaksi masih belum sempurna. Keseluruhan puncak difraktogram yang tajam menunjukkan bahwa sampel mempunyai derajat kristalinitas yang tinggi sehingga dapat dinyatakan bahwa penggantian kation-*A* tidak berpengaruh pada derajat kristalinitasnya.

Gambar 2. Difraktogram $Ba_xSr_{(1-x)}TiO_3$ (x = 0,2; 0,4; 0,6, dan 0,8).

Difraktogram sampel SrTiO₃ dan Ba_xSr_{(1-x}TiO₃ (x = 0,2; 0,4; 0,6) dilakukan dengan metode Le Bail, *refinement* difraktogram SrTiO₃ menggunakan data standar SrTiO₃ pada JCPDS No. 01-89-4934 dengan grup ruang *Pm-3m*. Sedangkan untuk *refinement* Ba_xSr_{(1-x}TiO₃ (x = 0,2; 0,4; 0,6) menggunakan data standar Ba_{0,5}Sr_{0,5}TiO₃ pada JCPDS No. 00-039-1395 dengan grup ruang *Pm-3m*. Plot *refinement* ditampilkan pada Gambar 3, dan hasilnya dirangkum pada Tabel 1. Nilai R_p dan R_{wp} untuk senyawa SrTiO₃ dan Ba_xSr_{(1-x})TiO₃ (x = 0,2; 0,4) di bawah 10%, sedangkan untuk x = 12,03, ini mengindikasikan bahwa difraktogram sampel mempunyai kesesuaian yang tinggi dengan difraktogram standar. Nilai parameter kisi (*a*, *b*, dan *c*) dan volume sel yang diperoleh semakin besar seiring meningkatnya konsentrasi Ba. Hal ini disebabkan jari-jari ionik Ba lebih besar dibandingkan dengan Sr, sehingga ukuran kisi menjadi lebih besar.

Gambar 3. Plot *refinement* difraktogram SrTiO₃ dan Ba_xSr_(1-x)TiO₃ (x = 0,2; 0,4; 0,6).

Gambar SEM senyawa SrTiO₃ ditampilkan pada Gambar 4 dan dapat dilihat bahwa morfologi partikel yang terbentuk cenderung berbentuk kubus (*nearly cubic*). Morfologi dan ukuran partikel submikro *cubic* juga pernah dilaporkan oleh Li *et al.* (2010) yang mensintesis SrTiO₃ dengan MSS dan menggunakan garam campuran NaCl-KCl. Hasil perhitungan luas area partikel dengan menggunakan piranti lunak Image-J dirangkum pada Tabel 2 dan diperoleh hasil bahwa ukuran luas area partikel SrTiO₃ pada rentang 0,009 – 0,043 μ m².

Danamatan	S-T:O	$Ba_xSr_{(1-x)}TiO_3$		
rarameter	511103	x = 0,2	x = 0,4	x = 0,6
Grup Ruang	Pm-3m	Pm-3m	Pm-3m	Pm-3m
Kisi Kristal	Kubik	Kubik	Kubik	Kubik
Unit Azimetrik (Z)	1	1	1	1
a = b = c (Å)	3,9035	3,9255	3,9666	4,0391
Volume Sel (Å ³)	59,4811	60,4907	62,4130	65,8964
R_p (%)	8,90	8,98	8,78	12,03
R_{wp} (%)	6,44	5,88	5,28	10,09
$GoF(\chi^2)$	0,1894	0,1090	0,1042	0,3510

Tabel 1. Data kristalo	grafi $Ba_x Sr_{(1-x)} TiO_3$	(x = 0; 0, 2; 0, 4; dan 0, 6)) dari hasil refinement den	gan metode Le Bail.
			/ ./	

Gambar 4. Gambar SEM Senyawa SrTiO₃ (pojok kanan atas adalah partikel terpilih yang dihitung luas areanya).

Adapun morfologi senyawa SrTiO₃ dengan kation-*A*/Sr tergantikan logam Ba terlihat pada Gambar 5. Dari gambar tersebut dapat diketahui bahwa terjadi perubahan morfologi dan ukuran partikel ketika sebagian kation-*A*/Sr digantikan dengan logam Ba. Morfologi yang sebelumnya mempunyai bentuk *nearly cubic* berubah menjadi polihedra dan ukuran menjadi lebih besar. Ozen *et al.* (2016) melaporkan bahwa morfologi partikel BaTiO₃ yang disintesis dengan menggunakan metode lelehan garam (NaCl/Na₂SO₄) berbentuk polihedra. Hal ini mengindikasikan bahwa semakin tinggi konsentrasi Ba maka morfologi partikel semakin identik ke morfologi BaTiO₃. Kimura *et al.* (2011) menyatakan bahwa bentuk morfologi yang diperoleh dari hasil sintesis lelehan garam dipengaruhi oleh komposisi kimia dan kondisi reaksi.

Nomor Partikel	Luas (µm²)	_
1	0,043	
2	0,016	
3	0,041	
4	0,026	
5	0,051	
6	0,015	
7	0,009	
8	0,016	
9	0,014	
10	0,009	

Tabel 2. Luas area partikel SrTiO₃.

Perubahan konsentrasi Ba maka komposisi kimia juga berubah sehingga ketika konsentrasi Ba menjadi dominan maka morfologi partikel yang terbentuk akan lebih identik ke morfologi BaTiO₃. Dari hal tersebut maka dapat dinyatakan bahwa kehadiran prekursor BaCO₃ menyebabkan pengurangan energi permukaan suatu bidang kristal sehingga pertumbuhan kristal pada suatu bidang tertentu sehingga mempunyai morfologi yang berbeda dengan SrTiO₃. Di lain pihak, Mao *et al.* (2007) mensintesis Ba_{0,70}Sr_{0,30}TiO₃ dengan MSS menggunakan garam campuran KCl/NaCl dan memperoleh senyawa dengan morfologi *quadrate-like*. Perbedaan morfologi yang diperoleh disebabkan oleh jenis garam yang digunakan berbeda.

Gambar 5. Gambar SEM $Ba_x Sr_{(1-x)}TiO_3$ (a) x = 0,2; (b) x = 0,4; (c) x = 0,6; dan (d) x = 0,8 (pojok kanan atas adalah partikel terpilih yang dihitung luas areanya).

Hasil perhitungan luas area 10 partikel terpilih di rangkum pada Tabel 3 dan dapat diketahui bahwa semakin tinggi konsentrasi Ba maka luas area partikel menjadi semakin besar, hal ini menunjukkan bahwa ukuran partikel juga membesar. Pada MSS pertumbuhan kristal dibagi menjadi dua tahap yaitu: (a) nukleasi, dan (b) *crystal growth*. Pada tahap nukleasi terjadi proses pembentukan inti kristal sedangkan pada tahapan *crystal growth* terjadi proses pertumbuhan inti kristal yang terbentuk (Kimura, 2011; Xue *et al.*, 2018). Partikel Ba_xSr_(1-x)TiO₃ (a) x = 0,2; (b) x = 0,4; (c) x = 0,6; dan (d) x = 0,8 mempunyai ukuran yang lebih besar. Hal ini mengindikasikan bahwa jumlah inti kristal yang yang terbentuk lebih sedikit dibandingkan dengan inti kristal SrTiO₃, sehingga pertumbuhan kristal lebih besar yang selanjutnya dihasilkan partikel dengan ukuran partikel yang yang terbentuk. Reaktan yang kelarutannya lebih rendah maka akan menghasilkan partikel dengan ukuran yang lebih besar, sehingga dapat dinyatakan bahwa pada sampel SrTiO₃ yang kation-*A*/Sr diganti dengan Ba terjadi perubahan kelarutan sebagai akibat kehadiran prekursor BaCO₃ yang menurunkan kelarutan terhadap garam NaCl.

$Ba_x Sr_{(1-x)} I1O_3 (x=0,2; 0,4; 0,6; 0,8)$					
Senyawa	Nomor Partikel	Luas(µm²)	Senyawa	Nomor Partikel	Luas(µm ²)
x = 0,2	1	0,124	x = 0,4	1	0,095
	2	0,176		2	0,082
	3	0,116		3	0,068
	4	0,045		4	0,091
	5	0,035		5	0,099
	6	0,093		6	0,081
	7	0,181		7	0,052
	8	0,077		8	0,086
	9	0,034		9	0,173
	10	0,064		10	0,061
<i>x</i> = 0,6	1	0,127	x = 0,8	1	0,784
	2	0,292		2	0,196
	3	0,166		3	0,123
	4	0,132		4	0,319
	5	0,244		5	0,535
	6	0,081		6	0,071
	7	0,063		7	0,424
	8	0,084		8	0,343
	9	0,107		9	0,594
	10	0,083		10	0,563

Tabel 3. Luas area partikel $Ba_xSr_{(1-x)}TiO_3$ (a) x = 0,2; (b) x = 0,4; (c) x = 0,6; dan (d) x = 0,8.

KESIMPULAN

Konsentrasi kation barium berpengaruh pada morfologi dan ukuran partikel senyawa $Ba_xSr_{(1-x)}TiO_3$ (x = 0; 0,2; 0,4; 0,6; dan 0,8). Kenaikan konsentrasi kation barium menyebabkan morfologi partikel berubah dari

nearly cubic (SrTiO₃) menjadi polihedra, sedangkan ukuran partikel menjadi lebih besar. Perubahan tersebut mengindikasikan bahwa keberadaan prekursor BaCO₃ telah mempengaruhi pertumbuhan partikel senyawa $Ba_xSr_{(1-x)}TiO_3$ (x = 0; 0,2; 0,4; 0,6; dan 0,8).

UCAPAN TERIMA KASIH

Terima kasih disampaikan kepada Febi Yusniyanti atas bantuan analisis difraktogram sampel.

DAFTAR PUSTAKA

- Abdi, M., Mahdikhah, V., and Sheibani, S., 2020. Visible Light Photocatalytic Performance of La-Fe co-Doped SrTiO₃ Perovskite Powder. *Optical Materials* 102, 1-11. doi: 10.1016/j.optmat.2020.109803.
- Dong, P., Hou, G., Xi, X., Shao, R., and Dong, F., 2017. WO₃-based Photocatalysts: Morphology Control, Activity Enhancement and Multifunctional Applications. *Environmental Science: Nano* 4, 539-557. doi: 10.1039/C6EN00478D.
- Gao, H., Yang, H., and Wang, S., 2018. Hydrothermal Synthesis, Growth Mechanism, Optical Properties and Photocatalytic Activity of Cubic SrTiO₃ Particles for the Degradation of Cationic and Anionic Dyes. *Optik* 175, 237-249. doi: 10.1016/j.ijleo.2018.09.027.
- Hur, S.G., Kim, T.W., Hwang, S.J., and Choy, J.H., 2006. Influences of A- and B-site Cations on the Physicochemical Properties of Perovskite-Structured A(In_{1/3}Nb_{1/3}B_{1/3}O₃ (A= Sr, Ba; B= Sn, Pb) Photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 183, 176-181. doi: 10.1016/j.jphotochem.2006.03.014.
- Hussain, T., Junaid, M., and Qayyum, H.A., 2020. Preparation of Ba-doped SrTiO₃ Photocatalyst by Sol-Gel Method for Hydrogen Generation. *Chemical Physics Letter* 754, 1-6. doi: 10.1016/j.cplett.2020.137741.
- Januari, T., Aini, N., Barroroh, H., and Prasetyo, A., 2020. The Effect of Synthesis Time to Particle Size of Bi₄Ti₃O₁₂ which Synthesized using Molten Single Salt NaCl Method. In: *IOP Conferencee Series: Earth* and Environmental Science, 456, 012013. doi: 10.1088/1755-1315/456/1/012013.
- Jesudoss, S.K., Vijaya, J.J., Selvam, N.C.S., Kombaiah, K., Sivachidambaram, M., Adinaveen, T., and Kennedy, L.J., 2016. Effects of Ba Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Self-Assembled ZnO Nanospheres. *Clean Technologies and Environmental Policy* 18, 729-741. doi: 10.1007/s10098-015-1047-1.
- Jiang, D., Sun, X., Wu, X., Shi, L., and Du, F., 2020. Hydrothermal Synthesis of Single-Crystal Cr-doped SrTiO₃ for Efficient Visible-Light Responsive Photocatalytic Hydrogen Evolution. *Material Research Express* 7, 015047. doi: 10.1088/2053-1591/ab660d.
- Kato, H., Kobayashi, M., Hara, M., and Kakihana, M., 2013. Fabrication of SrTiO₃ Exposing Characteristic Facets using Molten Salt Flux and Improvement of Photocatalytic Activity for Water Splitting. *Catalysis Science & Technology* 3, 1733. doi: 10.1039/C3CY00014A.
- Khare, A., and Chauhan, N., 2015. The Effect of Mg Doping on Structural and Luminescent Properties of Barium Strontium Titanate (BST). *Physics Procedia* 76, 86 91. doi: 10.1016/j.phpro.2015.10.016.
- Kimura, T., 2011. Molten Salt Synthesis of Ceramic Powders, Book Chapter Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications. Editor Costas Sikalidis, *Intechopen*. doi: 10.5772/20472.
- Kudo, A., Niishiro, R., Iwase, A., and Kato, H., 2007. Effects of Doping of Metal Cations on Morphology, Activity, and Visible Light Response of Photocatalysts. *Chemical Physics* 339 104–110. doi: 10.1016/j.chemphys.2007.07.024.
- Li, H.L., Du, Z.N., Wang, G.L., and Zhang, Y.C., 2010. Low Temperature Molten Salt Synthesis of SrTiO₃ Submicron Crystallites and Nanocrystals in the Eutectic NaCl-KCl. *Materials Letters* 64, 431–434. doi: 10.1016/j.matlet.2009.11.040.
- Mao, C., Wang, G., Dong, X., Zhou, Z., and Zhang, Y., 2007. Low Temperature Synthesis if Ba_{0.70}Sr_{0.30}TiO₃ Powders by the Molten Salt Method. *Materials Chemistry and Physics* 106: 164-167. doi:10.1016/j.matchemphys.2007.06.052.
- Özen, M., Mertens, M., Snijkers, F., D'Hondt, H., and Cool, P., 2017, Molten-Salt Synthesis of Tetragonal Micron-sized Barium Titanate from a Peroxo-hydroxide Precursor, *Advanced Powder Technology* 28(1), 146-154, doi: 10.1016/j.apt.2016.09.007.
- Patial, S., Hasija, V., Raizada, P., Singh, P., Singh, A.A.P.K., and Asiri, A.M., 2020, Tunable Photocatalytic Activity of SrTiO₃ for Water Splitting: Strategies and Future Scenario. *Journal of Environmental Chemical Engineering* 8(3), 103791. doi: 10.1016/j.jece.2020.103791.

- Puangpetch, T., Sreethawong, T., Yoshikawa, S., and Chavadej, S., 2009. Hydrogen Production from Photocatalytic Water Splitting over Mesoporous-Assembled SrTiO₃ Nanocrystal-Based Photocatalysts. *Journal of Molecular Catalysis A: Chemical* 312, 97–106. doi: 10.1016/j.molcata.2009.07.012.
- Tonda, S., Kumar, S., Anjaneyulu, O., and Shanker, V., 2014. Synthesis of Cr and La-codoped SrTiO₃ nanoparticles for enhanced photocatalytic performance under sunlight irradiation. *Physical Chemistry Chemical Physics* 16, 23819. Doi: 10.1039/C4CP02963A.
- Wang, W., Moses O. Tade, M.O., and Shao, Z., 2015. Research Progress of Perovskite Materials in Photocatalysis and Photovoltaics-Related Energy Conversion and Environmental Treatment. *Chemical Society Reviews* 44, 5371–5408. doi: 10.1039/C5CS00113G.
- Wu, Q.S., Liu, J.W., Wang, G.S., Chen, S.F., and Yu, S.H., 2016. A Surfactant-Free Route to Synthesize Ba_xSr_{1-x}TiO₃ Nanoparticles at Room Temperature, Their Dielectric and Microwave Absorption Properties. *Science China Materials* 59(8), 609–617. doi: 10.1007/s40843-016-5072-5.
- Wu, M.C., Chen, W.C., Chan, S.H., and Su, W.F., 2018, The Effect of Strontium and Barium Doping on Perovskite-Structured Energy Materials for Photovoltaic Applications. *Applied Surface Science* 429, 9-15. doi: 10.1016/j.solener.2018.12.065.
- Xue, P., Wu, H., Lu, Y., and Zhu, X., 2018. Recent Progress in Molten Salt Synthesis of Low- Dimensional Perovskite Oxide Nanostructures, Structural Characterization, Properties, and Functional Applications: A Review. Journal of Materials Science & Technology 34(6), 914–930. doi: 10.1016/j.jmst.2017.10.005.
- Yamakata, A., Yeilin, H., Kawaguchi, M., Hisatomi, T., Kubota, J., Sakata, Y., and Domen, K., 2015. Morphology-Sensitive Trapping States of Photogenerated Charge Carriers on SrTiO₃ Particles Studied by Time-Resolved Visible to Mid-IR Absorption Spectroscopy: The Effects of Molten Salt Flux Treatments. *Journal of Photochemistry and Photobiology A: Chemistry* 313 168–175. doi: 10.1016/j.jphotochem.2015.05.016.
- Yan, X., Li, J., and Zhou, H., 2019, Molten Salts Synthesis and Visible Light Photocatalytic Activity of Crystalline poly(triazine imide) with Different Morphologies. *Journal of Materials Science: Materials in Electronics* 30, 11706–11713. doi: 10.1007/s10854-019-01531-6.