

Inclusion Properties of Herz-Morrey Spaces With Variable Exponent

Hairur Rahman

Departement of Mathematics, Islamic State University of Maulana Malik Ibrahim Malang

Email: hairur@mat.uin-malang.ac.id

ABSTRACT

The inclusion properties in Herz-Morrey spaces has proved by Rahman in 2020. This paper aims to discuss the inclusion of the homogeneous Herz-Morrey spaces and homogeneous weak Herz-Morrey spaces with variable exponent. We also investigated the inclusion between both spaces. This result will be useful to prove fractional integral on the homogeneous Herz-Morrey spaces with variable exponent.

Keywords: Herz-Morrey spaces; inclusion properties; variable exponent.

INTRODUCTION

Inclusion properties or inclusion relation between spaces has received a lot of attention from researchers. It seems that many authors have studied this issue in some spaces (see [1]-[5]). Thus, this lead the author for discussing the inclusion properties especially in Herz-Morrey spaces.

Herz spaces can be traced back to the work of Beurling. Beurling [6] introduced a space \mathcal{A}_p , which is the original version of non homogeneous Herz spaces. Lu *et al* [7] has given the inclusion properties in homogeneous Herz spaces, as a proposition below.

Proposition 1.1. Let $\alpha \in \mathbb{R}$, p > 0, and $q \le \infty$. The following inclusions are valid.

a. If
$$p_1 \le p_2$$
, then $K_q^{\alpha, p_1}(\mathbb{R}^n) \subset K_q^{\alpha, p_2}(\mathbb{R}^n)$
b. If $q_2 \le q_1$, then $K_{q_1}^{\alpha, p}(\mathbb{R}^n) \subset K_{q_2}^{\alpha - n(\frac{1}{q_1} - \frac{1}{q_2}), p}(\mathbb{R}^n)$.

This proposition can be proved by simply computation. In fact, if 0 < r < 1, (*a*) is a consequence of the inequality

$$\left(\sum_{k=1}^{\infty} |a_k|\right)^r \le \sum_{k=1}^{\infty} |a_k|^r.$$

While, (*b*) can be deduced directly from the Hölder inequality.

In 2016, Gunawan *et al.* (see [1] [2]) have proved the inclusion of Morrey spaces and generalized Morrey spaces. Recently, Rahman [8] also has proved the inclusion properties in Herz-Morrey spaces. These result have been motivated the author to study more about inclusion in homogenous Herz-Morrey spaces, but in this case the author uses variable exponent.

Since 1991, the research of Kovacik and Rakosnik [9] motivated many researchers to study about function spaces with variable exponent in several discussion. Suppose that $\Omega \subset \mathbb{R}^n$ is an open set, $p(\cdot): \Omega \to [1, \infty)$ is a measurable

function and $L^{p(\cdot)}(\Omega)$ is denoted the set of measurable functions f on Ω , such that for some positive λ satisfied

$$\int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} dx < \infty.$$

If $L^{p(\cdot)}(\Omega)$ equipped by the Luxemburg-Nakano norm

$$\|f\|_{L^{p(\cdot)}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} dx \le 1 \right\},$$

then $L^{p(\cdot)}(\Omega)$ becomes a Banach function spaces. Since these spaces generalize the standard L^p spaces, they are also referred to as variable L^p spaces. $L^{p(\cdot)}(\Omega)$ is isometrically isomorphic to $L^p(\Omega)$, when p(x) = p is a constant.

In 2010, the boundedness of sublinear operators on Herz-Morrey space with variable exponent $\mathcal{M}\dot{K}_{p(\cdot)}^{\alpha,q}$ and $\mathcal{M}\dot{K}_{p(\cdot)}^{\overline{\alpha},q}$ was proved by Izuki [10]. Then, Xu and Yang [11] developed the definition of Herz-Morrey spaces with variable exponents. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, $0 < q < \infty$, $0 \le \lambda < \infty$, and $\alpha(\cdot)$ is a bounded real-valued measurable function on \mathbb{R}^n , the homogeneous Herz-Morrey spaces with variable exponent $\mathcal{M}\dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$ consists all functions $f \in L^q_{loc}(\mathbb{R}^n/\{0\})$ such that

$$\|f\|_{\mathcal{M}\,\check{K}^{\alpha(\cdot),\lambda}_{p(\cdot),q}(\mathbb{R}^{n})} = \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \Big(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p} \|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{p} \Big)^{\frac{1}{p(\cdot)}} < \infty,$$

where $B_k = \{x \in \mathbb{R}^n : |x| \le 2^k\}$, $A_k = B_k/B_{k-1}$ and $\chi_k = \chi_{A_k}$ is the characteristic function of the set A_k for $k \in \mathbb{Z}$.

As another spaces which have their weak type spaces, Herz-Morrey spaces also have their weak type spaces. For $\alpha(\cdot) \in \mathbb{R}^n$, $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, $0 \leq \lambda \leq \infty$ and $0 < q \leq \infty$, the homogeneous weak Herz-Morrey spaces with variable exponent $\left(W \mathcal{M}\dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)\right)$ is a set of measurable $f \in L^q_{loc}(\mathbb{R}^n/\{0\})$ which is equipped with norm such that

$$\|f\|_{W\mathcal{M}\,k_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})} = \sup_{\gamma>0} \gamma \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p(\cdot)}m_{k}(\gamma,f)^{\frac{p(\cdot)}{q}}\right)^{\frac{1}{p(\cdot)}} < \infty$$

where $m_k (\gamma, f) = |\{ x \in A_k : |f(x)| > \gamma \}|.$

Some authors have investigated those spaces in various terms of discussion (see [12] - [15]). Meanwhile, this article aims to discuss in terms inclusion properties and inclusion relation of the homogeneous Herz-Morrey spaces and homogeneous weak Herz-Morrey spaces with variable exponent.

RESULT AND DISCUSSION

Our main results are the following: **Theorem 2.1.** Let $1 \le p_1(\cdot) \le p_2(\cdot) < q < \infty$, and $\alpha(\cdot)$ is a bounded real-valued measurable function on \mathbb{R}^n . Then, the inclusion

$$\mathcal{M}\dot{K}_{p_{2}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n}) \subseteq \mathcal{M}\dot{K}_{p_{1}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n}),$$

Is valid.

Proof. We may take any $f \in \mathcal{M}\dot{K}_{p_1(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$. Then, by using Hölder inequality and $p_1 \leq p_2$ we have

$$\begin{split} \|f\|_{\mathcal{M}\,k_{p_{1}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})} &= \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{1}(\cdot)} \|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{p_{1}(\cdot)} \right)^{\overline{p_{1}(\cdot)}} \\ &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\left(\sum_{k=-\infty}^{L} (2^{k\alpha(\cdot)p_{1}(\cdot)})^{\frac{p_{2}(\cdot)}{p_{1}(\cdot)}} \right)^{\frac{p_{1}(\cdot)}{p_{2}(\cdot)}} \left(\sum_{k=-\infty}^{L} (\|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{p_{1}(\cdot)})^{\frac{p_{2}(\cdot)}{p_{2}(\cdot)-p_{1}(\cdot)}} \right)^{1-\frac{p_{1}(\cdot)}{p_{2}(\cdot)}} \right)^{\frac{1}{p_{2}(\cdot)}} \\ &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{2}(\cdot)} \right)^{\frac{p_{1}(\cdot)}{p_{2}(\cdot)}} \left(\sum_{k=-\infty}^{L} \|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{\frac{p_{1}(\cdot)p_{2}(\cdot)}{p_{2}(\cdot)-p_{1}(\cdot)}} \right)^{1-\frac{p_{1}(\cdot)}{p_{2}(\cdot)}} \right)^{\frac{1}{p_{2}(\cdot)}} \\ &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{2}(\cdot)} \left(\sum_{k=-\infty}^{L} \|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{\frac{p_{1}(\cdot)p_{2}(\cdot)}{p_{1}(\cdot)}} \right)^{\frac{1}{p_{2}(\cdot)}} \right)^{\frac{1}{p_{2}(\cdot)}} \\ &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{2}(\cdot)} \|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{p_{2}(\cdot)} \right)^{\frac{1}{p_{2}(\cdot)}} \\ &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{2}(\cdot)} \|f\chi_{k}\|_{L^{q}(\mathbb{R}^{n})}^{\frac{p_{2}(\cdot)}{p_{2}(\cdot)-p_{1}(\cdot)}} \right)^{\frac{1}{p_{2}(\cdot)}} \right)^{\frac{1}{p_{2}(\cdot)}} \end{aligned}$$

It is easy to know that $f \in \mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$, where $\alpha(\cdot) \in (\mathbb{R}^n)$ and $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$. Then, we have $\mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq \mathcal{M} \dot{K}_{p_1(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$.

By the previous theorem, the author established the following inclusions. **Theorem 2.2.** Let $1 \le p_1(\cdot) \le p_2(\cdot) < q < \infty$, and $\alpha(\cdot)$ is a bounded real-valued measurable function on \mathbb{R}^n , then the following inclusion is valid.

$$L^{q}(\mathbb{R}^{n}) = \mathcal{M} \, \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n}) \subseteq \mathcal{M} \, \dot{K}_{p_{2}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n}) \subseteq \mathcal{M} \, \dot{K}_{p_{1}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n}).$$

Proof. Theorem 2.1 has stated that $\mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq \mathcal{M} \dot{K}_{p_1(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$. Then, we only prove that $L^q(\mathbb{R}^n) = \mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq \mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$. Let $f \in \mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$, by using similar method as before, we get

$$\begin{split} \|f\|_{M\dot{K}\frac{\alpha(\cdot)\lambda}{q,q}(\mathbb{R}^{n})} &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)q} \left(\left(\int_{B(0,2^{k})} |f(x)|^{q} \ dy \right)^{\frac{1}{q}} \left(\int_{B(0,2^{k})} |\chi_{k}|^{q} dy \right)^{\frac{1}{q}} \right)^{\frac{1}{q}} \right)^{\frac{1}{q}} \\ &\leq \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)} \left(\int_{B(0,2^{k})} |f(x)|^{q} \ dy \right)^{\frac{1}{q}} (2^{kd})^{\frac{1}{q}} \\ &\leq C \left(\int_{B(0,2^{k})} |f(x)|^{q} \ dy \right)^{\frac{1}{q}} \end{split}$$

 $\leq \| f \|_{L^q(\mathbb{R}^n)}.$

Hence, $f \in L^q(\mathbb{R}^n)$ and $L^q(\mathbb{R}^n) \subseteq \mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$. In the other hand, for any $f \in L^q(\mathbb{R}^n)$, there exist any constant C such that $C = \sup_{L \in Z} \frac{1}{2^{L\lambda}} \sum_{k=-\infty}^{L} 2^{k\alpha(\cdot) + \frac{kd}{q}}$. Consequently, we have $f \in \mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$ and $\mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq L^q(\mathbb{R}^n)$. It gives conclusion that $L^q(\mathbb{R}^n) = \mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$, where $\alpha(\cdot) \in (\mathbb{R}^n)$.

Furthermore, we will prove that $\mathcal{M} \dot{K}_{q,q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq \mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$. By using similar method as the proof of Theorem 2.1, we have $\|f\|_{\mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)}$, where $\alpha(\cdot) \in (\mathbb{R}^n)$.

The author also added the inclusion of the homogeneous weak Herz-Morrey spaces with variable exponent by the following theorem. **Theorem 2.3.** Let $1 \le p_1(\cdot) \le p_2(\cdot) \le q < \infty$, and $\alpha(\cdot)$ is a bounded real-valued measurable function on \mathbb{R}^n , the following inclusion holds:

$$W \mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda} (\mathbb{R}^n) \subseteq W \mathcal{M} \dot{K}_{p_1(\cdot),q}^{\alpha(\cdot),\lambda} (\mathbb{R}^n).$$

Proof. Let $f \in ||f||_{W\mathcal{M}K^{\alpha(\cdot),\lambda}_{p_1(\cdot),q}(\mathbb{R}^n)}$, we have

$$\begin{split} \|f\|_{W\mathcal{M}\dot{K}_{p_{1}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})} &= \sup_{\gamma>0} \gamma \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{1}(\cdot)} m_{k}\left(\gamma,f\right)^{\frac{p_{1}(\cdot)}{q}} \right)^{\frac{1}{p_{1}(\cdot)}} \\ &\leq \sup_{\gamma>0} \gamma \sup_{L\in\mathbb{Z}} \frac{1}{2^{L\lambda}} \left(\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p_{2}(\cdot)} m_{k}(\gamma,f)^{\frac{p_{2}(\cdot)}{q}} \right)^{\frac{1}{p_{2}(\cdot)}} \\ &\leq \|f\|_{W\mathcal{M}\dot{K}_{p_{2}(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}. \end{split}$$

The above inequality has shown that $W \mathcal{M} \dot{K}_{p_2(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq W \mathcal{M} \dot{K}_{p_1(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n).$

Now, we state the inclusion relation between both spaces.

Theorem 2.4. Let $1 \le p(\cdot) \le q$, and $\alpha(\cdot)$ is a bounded real-valued measurable function on \mathbb{R}^n . Then, the inclusion

$$\mathcal{M}\,\dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)\subseteq W\,\mathcal{M}\,\dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$$

is proper.

Proof. We use similar idea as before to prove this theorem. Let $f \in \mathcal{M} \check{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$, $a(\cdot) \in \mathbb{R}^n$, $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ and $\gamma > 0$. We have observed that

$$|\{x \in A_k: |f(x)| > \gamma\}|^{\frac{p(\cdot)}{q}} \le \left(\int_{B(0,2^k)} |f(x)\chi_k|^q dx \right)^{\frac{p(\cdot)}{q}} = ||f\chi_k||_{L^q(\mathbb{R}^n)}^{p(\cdot)}.$$

Multiplying both sides by $\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p(\cdot)}$, we get

$$\sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p(\cdot)} |\{ x \in A_k \colon |f(x)| > \gamma \}|^{\frac{p(\cdot)}{q}} \le \sum_{k=-\infty}^{L} 2^{k\alpha(\cdot)p(\cdot)} || f\chi_k ||_{L^q(\mathbb{R}^n)}^{p(\cdot)}$$

Clearly, we see that $\|f\|_{W\mathcal{M}\dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)} \leq \|f\|_{\mathcal{M}\dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)}$ and $f \in W \mathcal{M} \dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$, which implies that $\mathcal{M} \dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n) \subseteq W \mathcal{M} \dot{K}_{p(\cdot),q}^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$.

CONCLUSION

By this result, the author can conclude that the homogeneous Herz-Morrey spaces with variable exponent have inclusion properties This result will be useful to be used in proving fractional integral on the homogeneous Herz-Morrey spaces with variable exponent.

ACKNOWLEDGMENT

This paper is partially supported by UIN Maulana Malik Ibrahim Malang Research and Innovation Program 2020.

REFERENCES

- [1] H. Gunawan, D. I. Hakim, K. M. Limanta and A. A. Masta, "Inclusion property of generalized Morrey spaces," *Math. Nachr.*, pp. 1-9, 2016.
- [2] H. Gunawan, D. I. Hakim and M. Idris, "Proper inclusions of Morrey spaces," *Glasnik Matematicki*, vol. 53, no. 1, 2017.
- [3] H. Gunawan, D. I. Hakim, E. Nakai and Y. Sawano, "On inclusion relation between weak Morrey spaces and Morrey spaces," *Nonlineae Analysis*, vol. 168, pp. 27-31, 2018.
- [4] H. Gunawan, E. Kikianty and C. Schwanke, "Discrete Morrey spaces and their inclusion properties," *Math. Nachr.*, pp. 1-14, 2017.
- [5] A. A. Masta, H. Gunawan and W. Setya-Budhi, "An Inclusion Property of Orlicz-Morrey Spaces," *J. Phys.: Conf. Ser*, vol. 893, pp. 1-7, 2017.
- [6] A. Beurling, "Construction and analysis of some convolution algebras," *Annales de L'Institut Fourier Grenoble,* vol. 14, pp. 1-32, 1964.
- [7] S. Lu, D. Yang and H. Guoen, Herz Type Spaces and Their Applications, Beijing: Science Press, 2008.
- [8] H. Rahman, "Inclusion properties of the homogeneous Herz-Morrey," *Cauchy*, vol. 6, no. 3, pp. 117-121, 2020.
- [9] O. Kovacik and J. Rakosnik, "On space and," *Czchoslovak Math. J.*, vol. 41, pp. 592-618, 1991.
- [10] M. Izuki, "Boundedness of Sublinear Operators on Herz Spaces with Variable Exponent and Application to Wavelet Characterization," vol. 36 (1), no. Analysis Mathematics, pp. 33-50, 2010.
- [11] J. Yang and J. Xu, "Herz-Morrey-Hardy Spaces with Variable Exponents and Their Applications," no. Journal of Function Spaces, pp. 1-19, 2015.
- [12] S. Lu and L. Xu, "Boundedness of Rough Singular Integral Operators on The Homogeneous Morrey-Herz Spaces," *Hokkaido Math. Journal*, vol. 34, pp. 299-314,

2005.

- [13] M. Izuki, "Fractional Integral on Herz-Morrey spaces with variable exponent," *Hiroshima Math. J.*, vol. 40, pp. 343-355, 2010.
- [14] Y. Mizuta and T. Ohno, "Herz-Morrey spaces of variable exponent, Riesz potential operator and duality," *Complex Variable and Elliptic Equations*, vol. 60, no. 2, pp. 211-240, 2015.
- [15] Y. Shi, X. Tao and T. Zheng, "Multilinier Riesz potential on Morrey-Herz spaces with non-doubling measure," *Journal of Inequality and Applications*, vol. 10, 2010.